China Mechanical Engineering ›› 2021, Vol. 32 ›› Issue (07): 832-838.DOI: 10.3969/j.issn.1004-132X.2021.07.010

Previous Articles     Next Articles

Multi-objective Optimization and Decision-making Method of High Speed Dry Gear Hobbing Processing Parameters

NI Hengxin;YAN Chunping;CHEN Jianlin;HOU Yuehui;CHEN Liang   

  1. State Key Laboratory of Mechanical Transmission,Chongqing University,Chongqing,400044
  • Online:2021-04-10 Published:2021-04-16

高速干切滚齿工艺参数的多目标优化与决策方法

倪恒欣;阎春平;陈建霖;侯跃辉;陈亮   

  1. 重庆大学机械传动国家重点实验室,重庆,400044
  • 通讯作者: 阎春平(通信作者),男,1973年生,教授、博士研究生导师。研究方向为智能制造系统与装备、绿色制造、制造系统工程等。发表论文30余篇。E-mail:ycp@cqu.edu.cn。
  • 作者简介:倪恒欣,女,1993年生,博士研究生。研究方向为智能制造系统与装备、绿色制造、工艺优化等。发表论文1篇。Email:nihengxin1120@126.com。
  • 基金资助:
    国家重点研发计划(2020YFE0201000)

Abstract: To reduce energy consumption and improve gear hobbing quality, a multi-objective optimization and decision-making method of high-speed dry gear hobbing processing parameters was proposed based on improved multi-objective grey wolf optimization(MOGWO) algorithm and TOPSIS. The gear hobbing processing parameters were analyzed, and cutting parameters and hob parameters were taken as optimization variables. A multi-objective optimization model for minimum energy consumption and optimal gear hobbing quality was established. The improved MOGWO algorithm was used to optimize the model iteratively, and TOPSIS was subsequently utilized to make multi-attribute decision on the optimized processing parameters. Effectiveness of the proposed method was verified by experimental results.

Key words: high speed dry gear hobbing, processing parameter, multi-objective optimization, grey wolf optimization algorithm, technique for order preference by similarity to an ideal solution(TOPSIS)

摘要: 为降低高速干切滚齿加工能耗、提高滚齿加工质量,提出一种基于改进多目标灰狼优化(MOGWO)算法和逼近理想解排序法(TOPSIS)的高速干切滚齿工艺参数多目标优化与决策方法。分析了滚齿工艺参数,将切削参数和滚刀参数作为优化变量,构建了面向最小加工能耗和最优加工质量的多目标优化模型,采用改进MOGWO算法对所建的模型进行迭代寻优,利用TOPSIS对优化的工艺参数解进行多属性决策。实验结果验证了所提方法的有效性。 

关键词: 高速干切滚齿, 工艺参数, 多目标优化, 灰狼优化算法, 逼近理想解排序法

CLC Number: