China Mechanical Engineering ›› 2021, Vol. 32 ›› Issue (11): 1261-1273.DOI: 10.3969/j.issn.1004-132X.2021.11.001
Previous Articles Next Articles
CAO Junyi;LIU Qinghua;HONG Jun
Online:
2021-06-10
Published:
2021-06-22
曹军义;刘清华;洪军
作者简介:
曹军义,男,1977年生,教授、博士研究生导师。研究方向为振动能量俘获的智能结构与非线性动力学、连接结构的非线性动力学、复杂机电系统故障诊断与健康维护。E-mail: caojy@mail.xjtu.edu.cn。
基金资助:
CLC Number:
CAO Junyi, LIU Qinghua, HONG Jun. Overview of Micro Friction to Macro Dynamics for Bolted Connections[J]. China Mechanical Engineering, 2021, 32(11): 1261-1273.
曹军义, 刘清华, 洪军. 螺栓连接微观摩擦到宏观动力学研究综述[J]. 中国机械工程, 2021, 32(11): 1261-1273.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2021.11.001
[1]李操, 商显扬, 周鑫, 等. 箭体结构连接刚度影响因素研究[J]. 中国机械工程, 2018, 29(16): 1947-1951. LI Cao, SHANG Xianyang, ZHOU Xin, et al. Study on Influence Factors of Connection Stiffness of Rocket Structure[J]. China Mechanical Engineering, 2018, 29(16): 1947-1951. [2]李玉奇, 罗忠, 栗江, 等. 考虑螺栓联接结构的轴承-转子系统振动特性分析[J]. 机械工程学报, 2019, 55(19): 60-67. LI Yuqi, LUO Zhong, LI Jiang, et al. Vibration Characteristics of Rotor Bearing System with Bolted Joint Structure[J].Journal of Mechanical Engineering, 2019, 55(19): 60-67. [3]李斌斌, 赵友坤, 刘杰. 腹板—翼缘搭接连接结构钉载分配特性研究[J]. 中国机械工程, 2019, 30(9): 1041-1048. LI Binbin, ZHAO Youkun, LIU Jie. Research on Load Distribution Characteristics for Web-flange Splice Structures[J]. China Mechanical Engineering, 2019, 30(9): 1041-1048. [4]栗江, 李玉奇, 罗忠, 等. 航空发动机联接结构振动特性研究进展[J]. 航空发动机, 2018, 44(5): 9-17. LI Jiang, LI Yuqi, LUO Zhong, et al. Research Progress on Vibration Characteristics of Aeroengine Jointed Structures[J]. Aeroengine, 2018, 44(5): 9-17. [5]齐艳华, 黄庆涛, 袁博, 等. 机械装备螺栓连接状态测试技术研究现状[J]. 航空制造技术, 2019, 62(5): 63-70. QI Yanhua, HUANG Qingtao, YUAN Bo, et al. Research Status of Testing Technology for Bolted State of Mechanical Equipment[J]. Aeronautical Manufacturing Technology, 2019, 62(5): 63-70. [6]SEGALMAN D J, GREGORY D L, STARR M J, et al. Handbook on Dynamics of Jointed Structures[R]. Albuquerque: Sandia National Laboratories, 2009. [7]李玲, 蔡安江, 蔡力钢, 等. 螺栓结合面微观接触模型[J]. 机械工程学报, 2016, 52(7): 205-210. LI Ling, CAI Anjiang, CAI Ligang, et al. Micro-contact Model of Bolted-joint Interface[J]. Journal of Mechanical Engineering, 2016, 52(7): 205-210. [8]JIANG S Y, ZHEGN Y J, ZHU H. A Contact Stiffness Model of Machined Plane Joint Based on Fractal Theory[J]. Journal of Tribology, 2010, 132(1): 1-7. [9]尤晋闽, 陈天宁. 结合面静态接触参数的统计模型研究[J]. 振动与冲击,2010, 29(11): 47-50. YOU Jinmin, CHEN Tianning. Statistical Model for Static Contact Parameters of Joint Surfaces[J]. Journal of Vibration and Shock, 2010, 29(11): 47-50. [10]张学良, 王南山, 温淑花, 等. 机械结合面切向接触阻尼能量耗散弹塑性分形模型[J]. 机械工程学报, 2013, 49(12): 43-49. ZHANG Xueliang, WANG Nanshan, WEN Shuhua, et al. Elastoplastic Fractal Model for Tangential Contact Damping Energy Dissipation of Machine Joint Interfaces[J]. Journal of Mechanical Engineering, 2013, 49(12): 43-49. [11]ERITEN M, POLYCARPOU A A. BERGMAN L A. Physics-based Modeling for Fretting Behavior of Nominally Flat Rough Surfaces[J]. International Journal of Solids and Structures, 2011, 48(10): 1436-1450. [12]SEGALMAN D J. A Four-parameter Iwan Model for Lap-type Joints[J]. Journal of Applied Mechanics, 2002, 72(5): 752-760. [13]王东, 徐超, 胡杰, 等. 连接结构接触界面非线性力学建模研究[J]. 力学学报, 2018, 50(1): 44-57. WANG Dong, XU Chao, HU Jie, et al. Nonlinear Mechanics Model for Joint Interface of Assembled Structure[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 44-57. [14]李一堃, 郝志明. 连接结构宏观滑移能量耗散特性研究[J]. 机械工程学报, 2018, 54(15): 125-131. LI Yikun, HAO Zhiming. Investigation on the Energy Dissipation Properties of Jointed Structure during Macro-slip Stage[J]. Journal of Mechanical Engineering, 2018, 54(15): 125-131. [15]ERITEN M, KURT M, LUO G, et al. Nonlinear System Identification of Frictional Effects in a Beam with a Bolted Joint Connection[J]. Mechanical Systems and Signal Processing, 2013, 39(1): 245-264. [16]BRAKE M R W. A Reduced Iwan Model that Includes Pinning for Bolted Joint Mechanics[J]. Nonlinear Dynamics, 2017, 87(2): 1335-1349. [17]吴冠男, 徐超. 基于混沌超声波激励的螺栓连接松动检测研究[J]. 振动与冲击, 2018, 37(9): 208-213. WU Guannan, XU Chao. Bolt Looseness Detection Based on Chaos Ultrasonic Excitation[J]. Journal of Vibration and Shock,2018, 37(9): 208-213. [18]杜飞, 徐超. 螺栓连接松动的导波监测技术综述[J]. 宇航总体技术, 2018, 2(4): 18-28. DU Fei, XU Chao. A Review on Bolt Preload Monitoring Using Guided Waves[J]. Astronautical Systems Engineering Technology, 2018, 2(4): 18-28. [19]WANG F, HUO L S, SONG G. A Piezoelectric Active Sensing Method for Quantitative Monitoring of Bolt Loosening Using Energy Dissipation Caused by Tangential Damping Based on the Fractal Contact Theory[J]. Smart Material and Structures, 2017, 27(1): 15023. [20]WANG F, MICHAEL H, SONG G. Monitoring of Early Looseness of Multi-bolt Connection: a New Entropy-based Active Sensing Method without Saturation[J]. Smart Materials and Structures, 2019, 28: 10LT01. [21]EWINS D J, BERGMAN L A, SEGALMAN D J. Report on the SNL/NSF International Workshop on Joint Mechanics[R]. Albuquerque: Sandia National Laboratories, 2006. [22]EWINS D J, BERGMAN L A, SEGALMAN D J. Report on the SNL/AWE/NSF International Workshop on Joint Mechanics[R]. Albuquerque: Sandia National Laboratories, 2009. [23]STARR M J, BRAKE M R, SEGALMAN D J, et al. Proceedings of the Third International Workshop on Jointed Structures[R]. Albuquerque: Sandia National Laboratories, 2013. [24]BRAKE M R, EWINS D J, SEGALMAN D J, et al. Proceedings of the Fourth International Workshop on Jointed Structures[R]. Albuquerque: Sandia National Laboratories, 2016. [25]温诗铸, 黄平. 摩擦学原理[M]. 3版. 北京:清华大学出版社, 2008. WEN Shizhu,HUANG Ping. Principles of Tribology[M]. 3rd ed. Beijing: Tsinghua University Press, 2008. [26]MAJUMDAR A A, BHUSHAN B. Role of Fractal Geometry in Roughness Characterization and Contact Mechanics of Surfaces[J]. Journal of Tribology, 1990, 112(2): 205-216. [27]MAJUMDAR A A, BHUSHAN B. Fractal Model of Elastic-plastic Contact between Rough Surfaces[J]. Journal of Tribology, 1991, 113(1): 1-11. [28]张学良, 黄玉美, 韩颖. 基于接触分形理论的机械结合面法向接触刚度模型[J]. 中国机械工程, 2000, 11(7): 727-729. ZHANG Xueliang, HUANG Yumei, HAN Ying. Fractal Model of the Normal Contact Stiffness of Machine Joint Surfaces Based on the Fractal Contact Theory[J]. China Mechanical Engineering, 2000, 11(7): 727-729. [29]温淑花, 张学良, 文晓光, 等. 结合面切向接触刚度分形模型建立与仿真[J]. 农业机械学报, 2009, 40(12): 229-233. WEN Shuhua, ZHANG Xueliang, WEN Xiaoguang, et al. Fractal Model of Tangential Contact Stiffness of Joint Interfaces and Its Simulation[J].Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(12): 229-233. [30]张学良, 陈永会, 温淑花, 等. 考虑弹塑性变形机制的结合面法向接触刚度建模[J]. 振动工程学报, 2015, 28(1):91-99. ZHANG Xueliang, CHEN Yonghui, WEN Shuhua, et al. The Model of Normal Contact Stiffness of Joint Interfaces Incorporating Elastoplastic Deformation Mechanism[J]. Journal of Vibration Engineering, 2015, 28(1): 91-99. [31]陈永会, 张学良, 温淑花, 等. 考虑弹塑性阶段的结合面法向接触阻尼分形模型[J]. 机械工程学报, 2019, 55(16): 58-68. CHEN Yonghui, ZHANG Xueliang, WEN Shuhua, et al. Fractal Model for Normal Contact Damping of Joint Surface Considering Elastoplastic Phase[J]. Journal of Mechanical Engineering, 2019, 55(16): 58-68. [32]田红亮, 赵春华, 方子帆, 等. 基于各向异性分形理论的结合面切向刚度改进模型[J]. 农业机械学报, 2013, 44(3): 257-266. TIAN Hongliang, ZHAO Chunhua, FANG Zifan, et al. Improved Model of Tangential Stiffness for Joint Interface Using Anisotropic Fractal Theory[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(3): 257-266. [33]GREENWOOD J A, WILLIAMSON J B P. Contact of Nominally Flat Surfaces[J]. Proceedings of the Royal Society of London, 1966, 295(1442): 300-319. [34]CHANG W, ETSION I, BOGY D B. An Elastic-plastic Model for the Contact of Rough Surfaces[J]. Journal of Tribology, 1987, 109(2): 257-263. [35]KOGUT L, ETSION I. Elastic-plastic Contact Analysis of a Sphere and a Rigid Flat[J]. Journal of Applied Mechanics, 2002, 69(5): 657-662. [36]BRIZMER V, KLIGERMAN Y, ETSION I. Elastic-plastic Spherical Contact under Combined Normal and Tangential Loading in Full Stick[J]. Tribology Letters, 2006, 25(1): 61-70. [37]ERITEN M, POLYCARPOU A A, BERGMAN L A. Development of a Lap Joint Fretting Apparatus[J]. Experimental Mechanics, 2011, 51(8): 1405-1419. [38]赵永武, 吕彦明, 蒋建忠. 新的粗糙表面弹塑性接触模型[J]. 机械工程学报, 2007, 43(3): 95-101. ZHAO Yongwu, LYU Yanming, JIANG Jianzhong. New Elastic-plastic Model for the Contact of Rough Surfaces[J]. Journal of Mechanical Engineering, 2007, 43(3): 95-101. [39]李玲, 蔡安江, 蔡力钢, 等. 螺栓结合面微观接触模型[J]. 机械工程学报, 2016, 52(7): 205-210. LI Ling, CAI Anjiang, CAI Ligang, et al. Micro-contact Model of Bolted-joint Interface[J]. Journal of Mechanical Engineering, 2016, 52(7): 205-210. [40]王东, 徐超, 万强. 一种考虑微凸体法向弹塑性接触的粗糙面力学模型[J]. 上海交通大学学报, 2016, 50(8): 1264-1269. WANG Dong, XU Chao, WAN Qiang. A Normal Mechanical Model for Elastic-plastic Contact of Rough Surface[J]. Journal of Shanghai Jiao Tong University, 2016, 50(8): 1264-1269. [41]IWAN W D, A Distributed-element Model for Hysteresis and Its Steady-state Dynamic Response[J]. Journal of Applied Mechanics, 1966, 33(4): 893-990. [42]SEGALMAN D J. An Initial Overview of Iwan Modeling for Mechanical Joints[R]. Albuquerque: Sandia National Laboratories, 2001. [43]WANG X Q , MIGNOLET M P. Stochastic Iwan-type Model of a Bolted Joint: Formulation and Identification[C]//Dynamics of Coupled Structures. Orlando: The Society for Experimental Mechanics, 2014, 1: 463-472. [44]LI Y, HAO Z. A Six-parameter Iwan Model and Its Application[J]. Mechanical Systems and Signal Processing, 2016, 68: 354-365. [45]BRAKE M R W. A Reduced Iwan Model That Includes Pinning for Bolted Joint Mechanics[J]. Nonlinear Dynamics, 2017, 87(2):1335-1349. [46]CHEN J , ZHANG J , HONG J, et al. Modeling Tangential Contact of Lap Joints Considering Surface Topography Based on Iwan Model[J]. Tribology International, 2019, 137: 66-75. [47]BRAKE M R W. The Mechanics of Jointed Structures[M]. Gewerbestrasse: Springer International Publishing, 2018. [48]GROSS J, ARMAND J, LACAYO R M, et al. A Numerical Round Robin for the Prediction of the Dynamics of Jointed Structures[C]//Dynamics of Coupled Structures. Orlando: the Society for Experimental Mechanics, 2016, 4:195-211. [49]FLICEK R C. Stress Waves Propagating through Jointed Connections[C]//34th International Modal Analysis Conference. Albuquerque: Sandia National Laboratories, 2015:SAND 2015-9344C. [50]LACAYO R M, ALLEN M S. Updating Structural Models Containing Nonlinear Iwan Joints Using Quasi-static Modal Analysis[J]. Mechanical Systems and Signal Processing, 2019, 118: 133-157. [51]SEGALMAN D J, ALLEN M S, ERITEN M, et al. Experimental Assessment of Joint-like Modal Models for Structures[C]//ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Boston: ASME, 2015:DETC 2015-47946. [52]DEANER B J, ALLEN M S, STARR M J, et al. Application of Viscous and Iwan Modal Damping Models to Experimental Measurements from Bolted Structures[J]. Journal of Vibration and Acoustics, 2015, 137(2): 21012. [53]MAYES R L. Wind Turbine Experimental Dynamic Substructure Development[C]//Topics in Experimental Dynamics Substructuring and Wind Turbine Dynamics. New York: The Society for Experimental Mechanics, 2012,2:193-203. [54]GAUL L, LENZ J. Nonlinear Dynamics of Structures Assembled by Bolted Joints[J]. Acta Mechanica, 1997, 125(1): 169-181. [55]DOMINIK S, WILLNER K. Investigation of a Jointed Friction Oscillator Using the Multiharmonic Balance Method[J]. Mechanical Systems and Signal Processing, 2015, 52: 73-87. [56]田红亮, 朱大林, 秦红玲, 等. 结合部法向载荷解析解修正与定量实验验证[J]. 农业机械学报, 2011, 42(9): 213-218. TIAN Hongliang, ZHU Dalin, QIN Hongling, et al. Modification of Normal Load’s Analytic Solutions for Joint Interface and Quantitative Experimental Verification[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(9): 213-218. [57]温淑花, 张宗阳, 张学良, 等. 固定结合面刚度分形模型[J]. 农业机械学报, 2013, 44(2): 255-260. WEN Shuhua, ZHANG Zongyang, ZHANG Xueliang, et al. Stiffness Fractal Model for Fixed Joint Interfaces[J].Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(2): 255-260. [58]SONG Y, HARTWIGSEN C J, MCFARLAND D M, et al. Simulation of Dynamics of Beam Structures with Bolted Joints Using Adjusted Iwan Beam Elements[J]. Journal of Sound and Vibration, 2004, 273(1): 249-276. [59]徐超, 杨旭辉, 张铎. 螺栓连接梁的非线性动力学响应分析[J]. 强度与环境, 2011, 38(2): 1-5. XU Chao, YANG Xuhui, ZHANG Duo. Study onNonlinear Dynamic Response of Bolted Jointed Beam[J]. Structure and Environment Engineering, 2011, 38(2): 1-5. [60]DEANER B J, ALLEN M S, STARR M J, et al. Application of Viscous and Iwan Modal Damping Models to Experimental Measurements from Bolted Structures[J]. Journal of Vibration and Acoustics, 2015, 137(2): 21012. [61]LACAYO R, PESARESI L, GROSS J, et al. Nonlinear Modeling of Structures with Bolted Joints: a Comparison of Two Approaches Based on a Time-domain and Frequency-domain Solver[J]. Mechanical Systems and Signal Processing, 2019, 114(1): 413-438. [62]江和龄, 孔令飞, 李超, 等. 螺栓结合部接触区域非线性动态特征的凝聚建模方法[J]. 机械工程学报, 2018, 54(17): 218-225. JIANG Heling, KONG Lingfei, LI Chao, et al. Condensation Modeling of Nonlinear Dynamics in Contact Region of Bolted Joint[J]. Journal of Mechanical Engineering, 2018, 54(17): 218-225. [63]芦旭, 张宇航, 陈岩, 等. 含剪力销(锥)螺栓法兰连接结构弯剪扭耦合振动研究[J]. 振动与冲击, 2017, 36(2): 139-146. LU Xu, ZHANG Yuhang, CHEN Yan, et al. Coupled Vibration of Bolt Flange Connections Containing Shear Pins [J]. 2017, 36(2): 139-146. [64]芦旭, 王平, 王建男, 等. 含剪力销(锥)螺栓法兰连接结构非线性特性[J]. 计算力学学报, 2015, 32(4): 503-511. LU Xu, WANG Ping, WANG Jiannan, et al. Nonlinear Behavior of Bolted Flange Connections Containing Shear Pin[J]. Chinese Journal of Computational Mechanics, 2015, 32(4): 503-511. [65]ZHOU Y, LUO Z, BIAN Z, et al. Nonlinear Vibration Characteristics of the Rotor Bearing System with Bolted Flange Joints[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2019, 233(4): 910-930. [66]ZHU L, ABDEL-HAKIM B, HONG J. Analytical Evaluation of Elastic Interaction in Bolted Flange Joints[J]. International Journal of Pressure Vessels and Piping, 2018, 165: 176-184. [67]ZHU L, BOUZID H, HONG J, et al. Elastic Interaction in Bolted Flange Joints: an Analytical Model to Predict and Optimize Bolt Load[J]. ASME Journal of Pressure Vessel Technology, 2018, 140(4): 41202. [68]ROETTGEN D R, ALLEN M S. Nonlinear Characterization of a Bolted, Industrial Structure Using a Modal Framework[J]. Mechanical Systems and Signal Processing, 2017, 84: 152-170. [69]BEAUDOIN M A, BEHDINAN K. Analytical Lump Model for the Nonlinear Dynamic Response of Bolted Flanges in Aero-engine Casings[J]. Mechanical Systems and Signal Processing, 2019, 115: 14-28. [70]蔡力钢, 李玲, 郭铁能, 等. 基于力状态映射法辨识非线性结合部动态参数[J]. 机械工程学报, 2011, 47(7): 65-72. CAI Ligang, LI Ling, GUO Tieneng, et al. Identification of Nonlinear Joint Parameters with Force-state Mapping Method[J]. Journal of Mechanical Engineering, 2011, 47(7): 65-72. [71]李玲, 蔡力钢, 郭铁能, 等 子结构综合法辨识结合部的特征参数[J]. 振动.测试与诊断, 2011, 31(4): 439-444. LI Ling, CAI Ligang, GUO Tieneng, et al. Identification of Characteristic Parameters of Joints by Substructure Synthesis Method[J]. Journal of Vibration, Measurement and Diagnosis, 2011, 31(4): 439-444. [72]孙志勇, 孙伟, 孙清超, 等. 螺栓连接结合部薄层单元参数优化辨识[J]. 机械设计与制造, 2019, 335(1): 57-61. SUN Zhiyong, SUN Wei, Sun Qingchao, et al. Optimization and Identification for Thin-layer Element Parameters of Bolted Joints[J]. Machinery Design and Manufacture, 2019, 335(1): 57-61. [73]WANG D. Identification for Joint Interfaces with Correlation Analysis of Instantaneous Dynamics[J]. Archive of Applied Mechanics, 2020, 90(1): 187-198. [74]FILIPPIS G D, NOEL J P, KERSCHEN G. et al. Model Reduction and Frequency Residuals for a Robust Estimation of Nonlinearities in Subspace Identification[J]. Mechanical Systems and Signal Processing, 2017, 93(93): 312-331. [75]FILIPPIS G D, NOEL J P, KERSCHEN G. et al. Experimental Nonlinear Identification of an Aircraft with Bolted Connections[C]// Proceedings of the 33rd IMAC, A Conference and Exposition on Structural Dynamics. Orlando: The Society for Experimental Mechanics, 2016, 1: 263-278. [76]JIN M, BRAKE M R W, SONG H. Comparison of Nonlinear System Identification Methods for Free Decay Measurements with Application to Jointed Structures[J]. Journal of Sound and Vibration, 2019, 453: 268-293. [77]KLERK D D, RIXEN D J, VOORMEEREN S N. General Framework for Dynamic Substructuring: History, Review, and Classification of Techniques[J]. AIAA Journal, 2008, 46(5): 1169-1181. [78]PETROV E P. A High-accuracy Model Reduction for Analysis of Nonlinear Vibrations in Structures with Contact Interfaces[J]. Journal of Engineering for Gas Turbines and Power, 2011, 133(10): 102503. [79]FIRRONE C M, ZUCCA S, GOLA M M. The Effect of Underplatform Dampers on the Forced Response of Bladed Disks by a Coupled Static/Dynamic Harmonic Balance Method[J]. International Journal of Non-linear Mechanics, 2011, 46(2): 363-375. [80]ALLEN M S, LACAYO R M, BRAKE M R, et al. Quasi-static Modal Analysis Based on Implicit Condensation for Structures with Nonlinear Joints[C]//International Conference on Noise and Vibration Engineering. Albuquerque: Sandia National Laboratories, 2016. [81]YUAN J, SALLES L, HADDAD F E, et al. An Adaptive Component Mode Synthesis Method for Dynamic Analysis of Jointed Structure with Contact Friction Interfaces[J]. Computers and Structures, 2020, 229: 106177. [82]BRAKE M R W. IMEX-a: an Adaptive, Fifth Order Implicit-explicit Integration Scheme[R]. Albuquerque: Sandia National Laboratories, 2016. [83]MAYES R L. The Craig-Mayes Reduction: a Craig-Bampton Experimental Dynamic Substructure Using the Transmission Simulator Method[M]//The Mechanics of Jointed Structures. Berlin: Springer, 2018: 451-463. [84]KRACK M, SCHEIDT P V. Nonlinear Modal Analysis and Modal Reduction of Jointed Structures[M]//The Mechanics of Jointed Structures. Berlin: Springer, 2018: 525-538. [85]吴冠男, 徐超. 基于混沌超声波激励的螺栓连接松动检测研究[J]. 振动与冲击, 2018, 37(9): 208-213. WU Guannan, XU Chao. Bolt Looseness Detection Based on Chaos Ultrasonic Excitation[J]. Journal of Vibration and Shock,2018, 37(9): 208-213. [86]DU F, XU C, WU G, et al. Preload Monitoring of Bolted L-Shaped Lap Joints Using Virtual Time Reversal Method[J]. Sensors, 2018, 18(6): 1928. [87]MEYER J J, ADAMS D E . Using Impact Modulation to Quantify Nonlinearities Associated with Bolt Loosening with Applications to Satellite Structures[J]. Mechanical Systems and Signal Processing, 2019, 116: 787-795. [88]赵俊锋, 张小丽, 闫强, 等. 螺栓连接结构动态特征学习与装配紧度智能监测[J]. 机械科学与技术, 2019, 38(3): 351-357. ZHAO Junfeng, ZHANG Xiaoli, YAN Qiang, et al. Dynamic Feature Learning and Assembly Tightness Intelligent Monitoring of Bolted Joint Structure[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(3): 351-357. |
[1] | TIAN Xianhua, YAN Kuicheng, ZHAO Jun, WANG Qingqing, WANG Yanqing, CHEN Xiaoran, . Properties at Elevated Temperature and High Strain Rate and Establishment of Johnson-Cook Constitutive Model for GH2132 [J]. China Mechanical Engineering, 2022, 33(07): 872-881. |
[2] | LI Xiuru, WEI Zhaocheng, GUO Minglong, WANG Minjie, GUO Jiang, GAO Wei, SUN Fang. Reverse Identification of Johnson-Cook Constitutive Parameters of 316H Stainless Steels Considering Thermoplastic Deformations [J]. China Mechanical Engineering, 2022, 33(07): 864-871. |
[3] | FAN Yihang, ZHAN Chunyong, HAO Zhaopeng. A New Constitutive Model for Hot Deformation Behavior of SiCp /2024Al Composites under High Strain Rate#br# [J]. China Mechanical Engineering, 2021, 32(11): 1346-1353. |
[4] | ZHONG Mingjun, WANG Kelu, CHENG Jing, OUYANG Delai, CUI Xia, LI Xin. Rheological Behavior and Physically-based Constitutive Model of TNTZ Titanium Alloy#br# [J]. China Mechanical Engineering, 2021, 32(10): 1233-1239. |
[5] | LIU Zhiqiang, ZHAO Jie, WANG Kehuan, WU Yong, LYU Liangxing, LIU Gang, YUAN Shijian, . Research Progresses on Coupling Multi-scale Simulation of Deformation and Microstructure Evolution of Titanium Alloy in Hot Forming Processes [J]. China Mechanical Engineering, 2020, 31(22): 2678-2690,2698. |
[6] | NIE Xin1;XIAO Bingbing1;SHEN Danfeng2;GUO Wenfeng1. Research on Thermal-mechanical Stamping Forming Considering Deformation Heat and Friction Heat Effects [J]. China Mechanical Engineering, 2020, 31(16): 2005-2015. |
[7] | CHEN Minghe;WANG Ning. Current Research and Development Trends in Constitutive Relation for High Strength Aluminum Alloys in Hot Plastic Deformation [J]. China Mechanical Engineering, 2020, 31(08): 997-1007. |
[8] | AI Jianguang, JIANG Feng, YAN Lan. Dynamic Mechanics Behavior and Constitutive Model of TC4-DT Titanium Alloy Materials [J]. China Mechanical Engineering, 2017, 28(05): 607-616. |
[9] | Cao Shufen, Zhang Liqiang, Guo Pengcheng, Li Luoxing. Study on Hot Deformation Behavior and Flow Stress Constitutive Model of 22MnB5 at High Temperature [J]. China Mechanical Engineering, 2014, 25(9): 1256-1261. |
[10] | LING Ling, LI Xing-Xing, WANG Hua-Lin, HU Xu-Jin. Constitutive Model of Stainless Steel 0Cr18Ni9 and Its Influence on Cutting Force Prediction [J]. China Mechanical Engineering, 2012, 23(18): 2243-2248. |
[11] | XU Zi-Wen-1, NA Jing-Xin-1, ZHANG Zhi-Yuan-2, WANG Tong-1. #br# Research on Elastic Contact of Finite Element Model of Bolted Connection [J]. China Mechanical Engineering, 2012, 23(15): 1830-1832,1839. |
[12] |
Zia-Ur-Rehman, BANG Xiong-Ai, DAN Shao-Qing, DING Bang-Bang.
Forming Simulation of Textile Composite Stamping on Double Dome
[J]. China Mechanical Engineering, 2011, 22(6): 728-731.
|
[13] | Li Lin;Xie Lijing;Wang Xibin;Zhang Zhijing. Constitutive Model of 2Cr13 for Finite Element Analysis of Chip Formation Process [J]. J4, 2009, 20(20): 0-2398. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||