[1]DONG Yanfang, ZHOU Zude, LIU Mingyao. Bearing Preload Optimization for Machine Tool Spindle by the Influencing Multiple Parameters on the Bearing Performance[J]. Advances in Mechanical Engineering, 2017, 9(2):1-9.
[2]史凯, 齐向阳, 吕术亮, 等. 主轴轴承预紧机构研究进展综述[J]. 现代制造工程, 2019(6):141-146.
SHI Kai, QI Xiangyang, LYU Shuliang, et al. Summary of Research Progress on Spindle Bearing Preloading Mechanism[J]. Modern Manufacturing Engineering,2019(6):141-146.
[3]Brecher C, Fey M, Bartelt A, Hassis A. Design and Test Rig Experiments of a High Speed Tapered Roller Bearing for Main Spindle Applications[J]. Procedia CIRP, 2016, 46:533-536.
[4]谢黎明, 张海杰, 邵宽平. 高速电主轴轴承的预紧[J]. 机械制造, 2011(2):66-67.
XIE Liming, ZHANG Haiping, SHAO Kuanping. Preload of High Speed Motorized Spindle Bearing[J]. Machinery, 2011(2):66-67.
[5]刘志峰, 孙海明.电主轴滚动轴承轴向预紧技术综述[J]. 中国机械工程, 2018, 29(14):1711-1723.
LIU Zhifeng, SUN Haiming. Review on Rolling Bearing Axial Preloaded Technique of Motorized Spindles[J]. China Mechanical Engineering, 2018, 29(14):1711-1723.
[6]KOICHIRO K, KATSUJI T. Preload Control Apparatus for Bearings with Shape Memory Alloy Springs:5094551[P]. 1992-03-10.
[7]杨庆东, 王科社, 孟玲霞. 基于材料热特性的轴承预紧力自调节设计方法[J]. 机械工程学报, 2008, 44(9):183-187.
YANG Qingdong, WANG Keshe, MENG Lingxia, et al. Design Method of Automatic Adjustment of Bearing Preload Based on Thermal Characteristic of Materials[J]. Journal of Mechanical Engineering, 2008, 44(9):183-187.
[8]徐莉萍, 李兰杰. 小载荷轴承试验台液压加载系统的设计[J]. 液压与气动, 2015(1):82-85.
XU Liping, LI Lanjie. Design of Hydraulic Loading System for the Little Loading Bearing Testing Bench[J]. Chinese Hydraulics & Pneumatics,2015(1):82-85.
[9]CHEN J S, CHEN K W. Bearing Load Analysis and Control of a Motorized High Speed Spindle[J]. International Journal of Machine Tools and Manufacture, 2005, 45(12):1487-1493.
[10]LEE C M, WOO W S, KIM D H. The Latest Preload Technology of Machine Tool Spindles:a Review[J]. International Journal of Precision Engineering and Manufacturing, 2017, 18(11):1669-1679.
[11]SHEN G, ZHU Z C, LI X. Real-time Electro-hydraulic Hybrid System for Structural Testing Subjected to Vibration and Force Loading[J]. Mechatronics, 2016, 33:49-70.
[12]郭栋, 付永领, 卢宁. 自抗扰控制技术在电液力伺服系统中的应用[J]. 北京航空航天大学学报, 2013, 39(1):115-119.
GUO Dong, FU Yongling, LU Ning. Application of ADRC Technology in Electrohydraulic Force Servo System[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(1):115-119.
[13]蒋书运. 预紧力可控智能化高速加工电主轴:20061003821 9.6 [P]. 2006-10-18.
JIANG Shuyun. Intelligent High Speed Machining Spindle with Controllable Preload:200610038219.6 [P]. 2006-10-18.
[14]徐小平, 周维纲, 严海桥. 一种用于调节电主轴的预紧力的装置:201320057377.1[P]. 2013-08-28.
XU Xiaoping, ZHOU Weigang, YAN Haiqiao. The Device of Adjust Motorizde Preload:201320057377.1[P]. 2013-08-28.
[15]沈刚, 李戈, 侯冬冬, 等. 振动与力加载耦合的电液伺服控制[J]. 控制理论与应用, 2017, 34(7):921-930.
SHEN Gang, LI Ge, HOU Dongdong, et al. Electro-hydraulic Servo Control System with Coupling Between Vibration and Force Loading[J]. Control Theory & Applications, 2017, 34(7):921-930.
[16]LIU Y, GONG G F, YANG H Y. Regulating Characteristics of New Tamping Device Exciter Controlled by Rotary Valve [J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(1):497-505.
[17]韩京清. 自抗扰控制技术——估计补偿不确定因素的控制技术[M]. 北京:国防工业出版社, 2008:183-207.
HAN Jingqing. Active Disturbance Rejection Control Technology--the Technique for Estimating and Compensating the Uncertainties[M].Beijing:National Defense Industry Press, 2008:183-207.
[18]王荣林, 陆宝春, 侯润民, 等. 交流伺服系统分数阶PID改进型自抗扰控制[J]. 中国机械工程, 2019, 30(16):1989-1995.
WANG Ronglin, LU Baochun, HOU Runmin, et al. FOPID Improved ADRC in AC Servo Systems[J]. China Mechanical Engineering, 2019, 30(16):1989-1995.
|