RUL Prediction of High-power Semiconductor Lasers Based on Cluster Sampling and SVR Model#br#
YAN Jianwen1,2,3;ZHONG Xiaohu1,2,4;FAN Yu2;GUO Sanmin1,2
1. School of Management,Hefei University of Technology,Hefei,230009
2. Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment,Hefei University of Technology,Hefei,230009
3. School of Mechanical Engineering,Zhejiang University,Hangzhou,310058
4. Anhui Wanwei Group Co.,Ltd.,Hefei,238002
YAN Jianwen, ZHONG Xiaohu, FAN Yu, GUO Sanmin, . RUL Prediction of High-power Semiconductor Lasers Based on Cluster Sampling and SVR Model#br#[J]. China Mechanical Engineering, 2021, 32(13): 1523-1529.
[1]李学敏,苏国强,翟光美,等. 高功率半导体激光器在金属材料加工中的应用[J]. 太原理工大学学报, 2016, 47(2):140-143.
LI Xuemin, SU Guoqiang, ZHAI Guangmei, et al. The Application of High-power Semiconductor Laser in Metallic Material processing[J]. Journal of Taiyuan University of Technology, 2016, 47(2):140-143.
[2]PECHT M. Prognostics and Health Management of Electronics[M]. Hoboken:Wiley, 2008.
[3]GEBRAEEL N, PAN J. Prognostic Degradation Models for Computing and Updating Residual Life Distributions in a Time-varying Environment[J]. IEEE Transactions on Reliability, 2008, 57(4):539-550.
[4]CURCURU G, GALANTE G, LOMBARDO A. A Predictive Maintenance Policy with Imperfect Monitoring[J]. Reliability Engineering & System Safety, 2010, 95(9):989-997.
[5]ZHAO Zhen,WANG Fuli, JIA Mingxing, et al. Predictive Maintenance Policy Based on Process Data[J]. Chemometrics and Intelligent Laboratory Systems, 2010, 103(2):137-143.
[6]SI Xiaosheng, WANG Wenbin, HU Changhua, et al. Remaining Useful Life Estimation: a Review on the Statistical Data Driven Approaches[J]. European Journal of Operational Research, 2011, 213(1):1-14.
[7]ZHANG Zhengxin, SI Xiaosheng, HU Changhua, et al. Degradation Data Analysis and Remaining Useful Life Estimation:a Review on Wiener-Process-based Methods[J]. European Journal of Operational Research, 2018, 271(3):775-796.
[8]WANG X L, BALAKRISHNAN N, GUO B, et al. Residual Life Estimation Based on Bivariate Non-stationary Gamma Degradation Process[J]. Journal of Statistical Computation and Simulation, 2015, 85(2):405-421.
[9]PAN Donghui, LIU Jiabao, CAO Jinde. Remaining Useful Life Estimation Using an Inverse Gaussian Degradation Model[J]. Neurocomputing, 2016, 185:64-72.
[10]LIN D M, MAKIS V. Recursive Filters for a Partially Observable System Subject to Random Failure[J]. Advances in Applied Probability, 2003, 35(1):207-227.
[11]DONG M, HE D. Hidden Semi-Markov Model-based Methodology for Multi-sensor Equipment Health Diagnosis and Prognosis[J]. European Journal of Operational Research, 2007, 178(3):858-878.
[12]YE Zhisheng, CHEN Nan. The Inverse Gaussian Process as a Degradation Model[J]. Technometrics, 2014, 56(3):302-311.
[13]PAN Donghui, LIU Jiabao, CAO Jinde. Remaining Useful Life Estimation Using an Inverse Gaussian Degradation Model[J]. Neurocomputing, 2016, 185:64-72.
[14]WANG Xiao, XU Dihua. An Inverse Gaussian Process Model for Degradation Data[J]. Technometrics, 2010, 52(2):188-197.
[15]裴洪,胡昌华,司小胜,等. 基于机器学习的设备剩余寿命预测方法综述[J].机械工程学报, 2019, 55(8):1-13.
PEI Hong, HU Changhua, SI Xiaosheng, et al. Review of Machine Learning Based Remaining Useful Life Prediction Methods for Equipment[J]. Journal of Mechanical Engineering, 2019, 55(8):1-13.
[16]CANNARILE F, BARALDI P, ZIO E. An Evidential Similarity-based Regression Method for the Prediction of Equipment Remaining Useful Life in Presence of Incomplete Degradation Trajectories[J]. Fuzzy Sets and Systems,2018, 367:36-50.
[17]TIAN Zhigang. An Artificial Neural Network Method for Remaining Useful Life Prediction of Equipment Subject to Condition Monitoring[J]. Journal of Intelligent Manufacturing, 2012, 23(2):227-237.
[18]ZIO E, MAIO F D. A Data-driven Fuzzy Approach for Predicting the Remaining Useful Life in Dynamic Failure Scenarios of a Nuclear System[J]. Reliability Engineering & System Safety, 2010, 95(1):49-57.
[19]BENKEDJOUH T, MEDJAHER K, ZERHOUNI N, et al. Remaining Useful Life Estimation Based on Nonlinear Feature Reduction and Support Vector Regression[J]. Engineering Applications of Artificial Intelligence, 2013, 26(7):1751-1760.
[20]BENKEDJOUH T, MEDJAHER K, ZERHOUNI N, et al. Health Assessment and Life Prediction of Cutting Tools Based on Support Vector Regression[J]. Journal of Intelligent Manufacturing, 2015, 26(2):213-223.
[21]LIU Yingchao, HU Xiaofeng, ZHANG Wenjuan. Remaining Useful Life Prediction Based on Health Index Similarity[J]. Reliability Engineering & System Safety, 2019, 18:502-510.
[22]LIU Zhen, WANG Qing, SONG Chenliang, et al. Similarity-based Difference Analysis Approach for Remaining Useful Life Prediction of GaAs-based Semiconductor Lasers[J]. IEEE Access, 2017, 5:21508-21523.
[23]LIU J, VITELLI V, ZIO E, et al. A Novel Dynamic-weighted Probabilistic Support Vector Regression-based Ensemble for Prognostics of Time Series Data[J]. IEEE Transactions on Reliability, 2015, 64(4):1203-1213.
[24]FUMEO E, ONETO L, ANGUITA D. Condition Based Maintenance in Railway Transportation Systems Based on Big Data Streaming Analysis[J]. Procedia Computer Science, 2015, 53:437-446.
[25]HUYNH K T, GRALL A, BERENGUER C. A Parametric Predictive Maintenance Decision-making Framework Considering Improved System Health Prognosis Precision[J]. IEEE Transactions on Reliability, 2018, 68(1):375-396.
[26]ZHAO Zhen, WANG Fuli, JIA Mingxing, et al. Predictive Maintenance Policy Based on Process Data[J]. Chemometrics and Intelligent Laboratory Systems, 2010, 103:137-143.
[27]李玲玲,顾训华,李凤强,等. 基于GaAs激光器性能退化的可靠性度量方法[J]. 工程设计学报, 2012, 19(3):166-169.
LI Lingling, GU Xunhua, LI Fengqiang, et al. Reliability Assessment Method based on GaAs Laser Performance Degradation[J]. Chinese Journal of Engineering Design, 2012, 19(3):166-169.