[1]BENDSOE M P, SIGMUND O. Topology Optimization:Theory, Methods, and Applications[M]. Berlin:Springer Science & Business Media, 2013.
[2]张锦江, 杨智春. 具有多阶频率与振型约束的结构动力学优化设计[J]. 强度与环境. 2007, 34(1):11-16.
ZHANG Jinjiang, YANG Zhichun. Structural Dynamics Optimization Design with Constraints of Multiple Natural Frequencies and Modal Shape[J]. Structure & Environment Engineering, 2007, 34(1):11-16.
[3]DU J, OLHOFF N. Topological Design of Freely Vibrating Continuum Structures for Maximum Values of Simple and Multiple Eigenfrequencies and Frequency Gaps[J]. Structural and Multidisciplinary Optimization, 2007, 34(2):91-110.
[4]OLHOFF N, DU J. Generalized Incremental Frequency Method for Topological Design of Continuum Structures for Minimum Dynamic Compliance Subject to Forced Vibration at a Prescribed Low or High Value of the Excitation Frequency [J]. Structural and Multidisciplinary Optimization, 2016, 54(5):1113-1141.
[5]SIGMUND O, JENSEN J S. Systematic Design of Phononic Band-gap Materials and Structures by Topology Optimization[J]. Philosophical Transactions of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, 2003, 361:1001-1019.
[6]DORN W S, GORMORY R E. Automatic Design of Optimal Structure[J]. Journal de Mecanique, 1964, 3(1):25-52.
[7]LAM Y C, SANTHIKUMAR S. Automated Rib Location and Optimization for Plate Structures[J]. Structural and Multidisciplinary Optimization, 2003, 25(1):35-45.
[8]ANSOLA R, CANALES J, TARRAGO J A, et al. Combined Shape and Reinforcement Layout Optimization of Shell Structures[J]. Structural and Multidisciplinary Optimization, 2004, 27(4):219-227.
[9]丁晓红, 李国杰, 蔡戈坚, 等. 薄板结构的加强筋自适应成长设计法[J]. 中国机械工程, 2005, 16(12):1057-1060.
DING Xiaohong, LI Guojie, CAI Gejian,et al. Adaptive Growth Method of Rib Distribution for Thin Plate Structure[J]. China Mechanical Engineering, 2005, 16(12):1057-1060.
[10]INOUE K, YAMANAKA M, KIHARA M. Optimum Stiffener Layout for the Reduction of Vibration and Noise of Gearbox Housing[J]. Journal of Mechanical Design, 2002, 124(3):518-523.
[11]LI B, YAN S, HONG J. A Growth-based Topology Optimizer for Stiffness Design of Continuum Structures under Harmonic Force Excitation[J]. Journal of Zhejiang University—Science A(Applied Physics & Engineering), 2016, 17(12):946-993.
[12]王睿, 张晓鹏, 亢战. 以动柔度为目标的结构阻尼材料层拓扑优化[J]. 振动与冲击, 2013, 32(22):36-40.
WANG Rui, ZHANG Xiaopeng,KANG Zhan. Topology Optimization of Damping Layer in Structures for Minimizing Dynamic Compliance[J]. Journal of Vibration and Shock, 2013, 32(22):36-40.
[13]ZHANG X, KANG Z. Vibration Suppression Using Integrated Topology Optimization of Host Structures and Damping Layers[J]. Journal of Vibration and Control, 2014, 22(1):60-76.
[14]刘海, 高行山, 常俊玲. 加筋板自由阻尼铺层的拓扑优化研究[J]. 强度与环境, 2014, 41(2):27-33.
LIU Hai, GAO Hangshan, CHANG Junling. Damping Material Optimal Distribution of Stiffened Plate with Free Damping Treatment Using Topology Optimization[J]. Structure & Environment Engineering, 2014, 41(2):27-33.
[15]桂洪斌, 赵德有, 郑云龙. 敷设粘弹性阻尼的加筋板振动和阻尼分析[J]. 中国造船, 2002, 43(3):40-47.
GUI Hongbin, ZHAO Deyou, ZHENG Yunlong. Vibration and Damping Analysis of Stiffened Plate with Viscoelastic Damping Treatment[J]. Shipbuilding of China, 2002, 43(3):40-47.
[16]臧献国, 于德介, 姚凌云, 等. 基于模态振型的自由阻尼层厚度分布优化[J]. 中国机械工程, 2010, 21(5):515-518.
ZANG Xianguo, YU Dejie, YAO Lingyun,et al, Optimization of Thickness Distribution of Unconstrained Damping Layer Based on Mode Shapes[J]. China Mechanical Engineering, 2010, 21(5):515-518.
[17]ALFOUNEH M, TONG L. Maximizing Modal Damping in Layered Structures via Multi-objective Topology Optimization[J]. Engineering Structures, 2017, 132:637-647.
[18]NIU B, HE X, SHAN Y, et al. On Objective Functions of Minimizing the Vibration Response of Continuum Structures Subjected to External Harmonic Excitation[J]. Structural and Multidisciplinary Optimization, 2018, 57(6):2291-2307.
[19]BRUNS T E, TORTORELLI D A. Topology Optimization of Non-linear Elastic Structures and Compliant Mechanisms[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(26):3443-3459.
|