China Mechanical Engineering ›› 2021, Vol. 32 ›› Issue (21): 2521-2531.DOI: 10.3969/j.issn.1004-132X.2021.21.001
Previous Articles Next Articles
ZHANG Jianxun1,2;YAO Bin1,2;DAI Yu1,2;XIA Guangming1,2
Online:
2021-11-10
Published:
2021-11-25
张建勋1,2;姚斌1,2;代煜1,2;夏光明1,2
通讯作者:
代煜(通信作者),男,1981年生,教授、博士研究生导师。研究方向为面向手术机器人的智能感知技术。E-mail:daiyu@nankai.edu.cn。
作者简介:
张建勋,男,1961年生,教授、博士研究生导师。研究方向为医疗机器人技术、智能机器人控制等。E-mail:zhangjx@nankai.edu.cn。
基金资助:
CLC Number:
ZHANG Jianxun, YAO Bin, DAI Yu, XIA Guangming, . A Review of Force Sensing Technology in Robot-assisted Laparoscopic Surgery[J]. China Mechanical Engineering, 2021, 32(21): 2521-2531.
张建勋, 姚斌, 代煜, 夏光明, . 机器人辅助腹腔镜手术中力感知技术的研究进展[J]. 中国机械工程, 2021, 32(21): 2521-2531.
[1]BROUWER I, USTIN J, BENTLEY L M, et al. Measuring in Vivo Animal Soft Tissue Properties for Haptic Modeling in Surgical Simulation[J]. Stud. Health Technol. Inform., 2001, 81:69-74. [2]OKAMURA A M. Haptic Feedback in Robot-assisted Minimally Invasive Surgery[J]. Current Opinion in Urology, 2009, 19(1):102-107. [3]付宜利, 李坤, 潘博, 等. 微创手术机器人力检测与力反馈技术研究现状[J]. 机器人, 2014, 36(1):117-128. FU Yili, LI Kun, PAN Bo, et al. A Survey of Force Sensing and Force Feedback Technology for Robot-assisted Minimally Invasive Surgical System[J]. Robot, 2014, 36(1):117-128. [4]SAUERLAND S, JASCHINSKI T, NEUGEBAUER E. Laparoscopic versus Open Surgery for Suspected Appendicitis[J]. Cochrane Database of Systematic Reviews, 2018(11):CD001546. [5]OKAMURA A M. Methods for Haptic Feedback in Teleoperated Robot-assisted Surgery[J]. Industrial Robot, 2004, 31(6):499-508. [6]DINESH V, SEAN C. Peer Review and Surgical Innovation:Robotic Surgery and Its Hurdles[J]. American Journal of Robotic Surgery, 2015, 2(1):39-44. [7]GWILLIAM J C, MAHVASH M, VAGVOLGYI B, et al. Effects of Haptic and Graphical Force Feedback on Teleoperated Palpation[C]∥ International Conference on Robotics and Automation. Kobe, 2009:677-682. [8]WAGNER C R, STYLOPOULOS N, JACKSON P G, et al. The Benefit of Force Feedback in Surgery:Examination of Blunt Dissection[J]. Presence:Teleoperators Virtual Environments, 2007, 16(3):252-262. [9]REILEY C E, AKINBIYI T, BURSCHKA D, et al. Effects of Visual Force Feedback on Robot-assisted Surgical Task Performance[J]. The Journal of Thoracic Cardiovascular Surgery, 2008, 135(1):196-202. [10]DEMI B, ORTMAIER T, SEIBOLD U. The Touch and Feel in Minimally Invasive Surgery[C]∥ IEEE International Workshop on Haptic Audio Visual Environments and Their Applications. Ottawa, 2005:8894919. [11]DARGAHI J, NAJARIAN S. An Endoscopic Force-position Sensor Grasper with Minimum Sensors[J]. Canadian Journal of Electrical Computer Engineering, 2003, 28(3):155-161. [12]PRASAD S K, KITAGAWA M, FISCHER G S, et al. A Modular 2-DOF Force-sensing Instrument for Laparoscopic Surgery[C]∥ Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention. Montreal, 2003:279-286. [13]FISCHER G S, AKINBIYI T, SAHA S, et al. Ischemia and Force Sensing Surgical Instruments for Augmenting Available Surgeon Information[C]∥ The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. Pisa, 2006:1030-1035. [14]LI K, PAN B, ZHAN J, et al. Design and Performance Evaluation of a 3-axis Force Sensor for MIS Palpation[J]. Sensor Review, 2015, 35(2):219-228. [15]代煜, 张建勋. 基于小波变换和维纳滤波的半导体器件1/f噪声滤波 [J]. 物理学报, 2011, 60(11):185-190. DAI Yu, ZHANG Jianxun. Reduction of 1/f Noise in Semiconductor Devices Based on Wavelet Transform and Wiener Filter[J]. Acta Physica Sinica, 2011, 60(11):185-190. [16]孙会娇, 代煜, 张建勋, 等. 直流电源激励下的电路高分辨力应变信号处理 [J]. 仪器仪表学报, 2019, 40(8):184-190. SUN Huijiao, DAI Yu, ZHANG Jianxun, et al. High Resolution Strain Signal Processing for the Circuit under DC Source Excitation[J]. Chinese Journal of Scientific Instrument, 2019, 40(8):184-190. [17]SOKHANVAR S, PACKIRISAMY M, DARGAHI J. A Multifunctional PVDF-based Tactile Sensor for Minimally Invasive Surgery[J]. Smart Materials Structures, 2007, 16(4):989-998. [18]SOKHANVAR S, PACKIRISAMY M, DARGAHI J. MEMS Endoscopic Tactile Sensor:Toward In-situ and In-vivo Tissue Softness Characterization[J]. IEEE Sensors Journal, 2009, 9(12):1679-1687. [19]DAI Y, ABIRI A, LIU S, et al. Grasper Integrated Tri-axial Force Sensor System for Robotic Minimally Invasive Surgery[C]∥ 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society(EMBC). Jeju, 2017:3936-3939. [20]KIM U, KIM Y B, SO J, et al. Sensorized Surgical Forceps for Robotic-assisted Minimally Invasive Surgery[J]. IEEE Transactions on Industrial Electronics, 2018, 65(12):9604-9613. [21]DARGAHI J, PARAMESWARAN M. A Micromachined Piezoelectric Tactile Sensor for an Endoscopic Grasper-theory, Fabrication and Experiments[J]. Journal of Microelectromechanical Systems, 2000, 9(3):329-335. [22]SEIBOLD U, HIRZINGER G. A 6-axis Forche/Torque Sensor Design for Haptic Feedback in Minimally Invasive Robotic Surgery[C]∥ 2nd VDE World Microtechnologies Congress. Munich, 2003:239-244. [23]KALANTARI M, RAMEZANIFARD M, AHMADI R, et al. A Piezoresistive Tactile Sensor for Tissue Characterization during Catheter-based Cardiac Surgery[J]. International Journal of Medical Robotics and Computer Assisted Surgery, 2011, 7(4):431-440. [24]BAKI P, SZEKELY G, KOSA G. Miniature Tri-axial Force Sensor for Feedback in Minimally Invasive Surgery[C]∥ 4th IEEE RAS & EMBS International Conference on Biomedical Robotics & Biomechatronics. Rome, 2012:12967935. [25]HWANG J H, KWON J H, KIM T K, et al. Design of Simple Structured Tactile Sensor for the Minimally Invasive Robotic Palpation[C]∥ IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Wollongong, 2013:1296-1299. [26]LEE J, CHOI W, YOO Y K, et al. A Micro-fabricated Force Sensor Using an All Thin Film Piezoelectric Active Sensor[J]. Sensors, 2014, 14(12):22199-22207. [27]KIM U, LEE D H, YOON W J, et al. Force Sensor Integrated Surgical Forceps for Minimally Invasive Robotic Surgery[J]. IEEE Transactions on Robotics, 2016, 31(5):1214-1224. [28]LEE D H, KIM U, GULREZ T, et al. A Laparoscopic Grasping Tool with Force Sensing Capability[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(1):130-141. [29]HESSINGER M, PILIC T, WERTHSCHUTZKY R, et al. Miniaturized Force/Torque Sensor for in Vivo Measurements of Tissue Characteristics[C]∥ International Conference of the IEEE Engineering in Medicine & Biology Society. Orlando, 2016:2022-2025. [30]KIM U, KIM Y B, SEOK D, et al. A Surgical Palpation Probe with 6-axis Force/Torque Sensing Capability for Minimally Invasive Surgery[J]. IEEE Transactions on Industrial Electronics, 2018, 65(3):2755-2765. [31]YU L, YAN Y, YU X, et al. Design and Realization of Forceps with 3-D Force Sensing Capability for Robot-assisted Surgical System[J]. IEEE Sensors Journal, 2018, 18(21):8924-8932. [32]PUANGMALI P, LIU H, SENEVIRATNE L, et al. Miniature 3-axis Distal Force Sensor for Minimally Invasive Surgical Palpation[J]. IEEE-ASME Transactions on Mechatronics, 2012, 17(4):646-656. [33]FONTANELLI G A, BUONOCORE L R, FICUCIELLO F, et al. A Novel Force Sensing Integrated into the Trocar for Minimally Invasive Robotic Surgery[C]∥ IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). Vancouver, 2017:131-136. [34]ZEMITI N, MOREL G, ORTMAIER T, et al. Mechatronic Design of a New Robot for Force Control in Minimally Invasive Surgery[J]. IEEE/ASME Transactions on Mechatronics, 2007, 12(2):143-153. [35]BANDARI N, DARGAHI J, PACKIRISAMY M. Miniaturized Optical Force Sensor for Minimally Invasive Surgery with Learning-based Nonlinear Calibration[J]. IEEE Sensors Journal, 2020, 20(7):3579-3592. [36]HASLINGER R, LEYENDECKER P, SEIBOLD U. A Fiberoptic Force-Torque-sensor for Minimally Invasive Robotic Surgery[C]∥ IEEE International Conference on Robotics and Automation. Karlsruhe, 2013:4390-4395. [37]HOSEOK S, HEECHUL K, JUWON J, et al. Development of FBG Sensor System for Force-feedback in Minimally Invasive Robotic Surgery[C]∥ 5th International Conference on Sensing Technology. Palmerston North, 2011:16-20. [38]LYU C, WANG S, SHI C. A High-precision and Miniature Fiber Bragg Grating-based Force Sensor for Tissue Palpation during Minimally Invasive Surgery[J]. Annals of Biomedical Engineering, 2019, 48(20):669-681. [39]姚斌, 张建勋, 代煜, 等. 用于微创外科手术机器人的多维力传感器解耦方法研究[J]. 仪器仪表学报, 2020, 41(1):147-153. YAO Bin, ZHANG Jianxun, DAI Yu, et al. Research on Decoupling Method of Multi-dimensional Force Sensor Used in Minimally Invasive Surgical Robot[J]. Chinese Journal of Scientific Instrument, 2020, 41(1):147-153. [40]TADA M, SASAKI S, OGASAWARA T. Development of an Optical 2-axis Force Sensor Usable in MRI Environments[C]∥ Proceedings of IEEE Sensors. Orlando, 2002:984-989. [41]PEIRS J, CLIJNEN J, REYNAERTS D, et al. A Micro Optical Force Sensor for Force Feedback during Minimally Invasive Robotic Surgery[J]. Sensors and Actuators A:Physical, 2004, 115(2):447-455. [42]MULLER M, HOFFMANN L, BUCK T, et al. Fiber Bragg Grating-based Force-Torque Sensor with Six Degrees of Freedom[J]. International Journal of Optomechatronics, 2009, 3(3):201-214. [43]POLYGERINOS P, SCHAEFFTER T, SENEVIRATNE L, et al. A Fibre-optic Catheter-tip Force Sensor with MRI Compatibility:a Feasibility Study[C]∥Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Minneapolis, 2009:1501-1504. [44]AHMADI R, ARBATANI S, PACKIRISAMY M, et al. Micro-optical Force Distribution Sensing Suitable for Lump/Artery Detection[J]. Biomedical Microdevices, 2015, 17:10. [45]XUE R F, REN B Y, HUANG J Q, et al. Design and Evaluation of FBG-based Tension Sensor in Laparoscope Surgical Robots[J]. Sensors, 2018, 18:2067. [46]ZARRIN P S, ESCOTO A, XU R, et al. Development of a 2-DOF Sensorized Surgical Grasper for Grasping and Axial Force Measurements[J]. IEEE Sensors Journal, 2018, 18(7):2816-2826. [47]LI T, SHI C, REN H. A High-sensitivity Tactile Sensor Array Based on Fiber Bragg Grating Sensing for Tissue Palpation in Minimally Invasive Surgery[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(5):2306-2315. [48]SHI C, LI M, LYU C, et al. A High-sensitivity Fiber Bragg Grating-based Distal Force Sensor for Laparoscopic Surgery[J]. IEEE Sensors Journal, 2020, 20(5):2467-2475. [49]NOOHI E, PARASTEGARI S, EFRAN M. Using Monocular Images to Estimate Interaction Forces during Minimally Invasive Surgery[C]∥ 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago, 2014:4297-4302. [50]GESSERT N, BERINGHOFF J, OTTE C, et al. Force Estimation from OCT Volumes Using 3D CNNs[J]. International Journal of Computer Assisted Radiology and Surgery, 2018, 13(7):1073-1082. [51]ROSEN J, HANNAFORD B, MACFARLANE M P, et al. Force Controlled and Teleoperated Endoscopic Grasper for Minimally Invasive Surgery-experimental Performance Evaluation[J]. IEEE Transactions on Biomedical Engineering, 1999, 46(10):1212-1221. [52]SANG H, YUN J, MONFAREDI R, et al. External Force Estimation and Implementation in Robotically Assisted Minimally Invasive Surgery[J]. International Journal of Medical Robotics and Computer Assisted Surgery, 2017, 13(2):28466997. [53]THOLEY G, PILLARISETTI A, GREEN W, et al. Design, Development, and Testing of an Automated Laparoscopic Grasper with 3-D Force Measurement Capability[C]∥ International Symposium on Medical Simulation. Cambridge, 2004:38-48. [54]KENNEDY C W, DESAI J P. A Vision-based Approach for Estimating Contact Forces:Applications to Robot-assisted Surgery[J]. Applied Bionics and Biomechanics, 2005, 2(1):53-60. [55]YOON S M, LEE M, KIM C. Sliding Perturbation Observer Based Reaction Force Estimation Method of Surgical Robot Instrument for Haptic Realization[J]. International Journal of Humanoid Robotics, 2015, 12(2):1550013. [56]AVILES A I, ALSALEH S, SOBREVILLA P, et al. Sensorless Force Estimation Using a Neuro-vision-based Approach for Robotic-assisted Surgery[C]∥ 7th International IEEE/EMBS Conference on Neural Engineering(NER). Montpellier, 2015:86-89. [57]RAHMAN N, LEE M. Actual Reaction Force Separation Method of Surgical Tool by Fuzzy Logic Based SMCSPO[J]. International Journal of Control, Automation, and Systems, 2015, 13(2):379-389. [58]ZHAO B, NELSON C A. Estimating Tool-tissue Forces Using a 3-Degree-of-freedom Robotic Surgical Tool[J]. Journal of Mechanisms and Robotics, 2016, 8(5):051015. [59]LIN W, SONG K. Instrument Contact Force Estimation Using Endoscopic Image Sequence and 3D Reconstruction Model[C]∥ 2016 International Conference on Advanced Robotics and Intelligent Systems(ARIS). Taipei, 2016:16774744. [60]LI Y, HANNAFORD B. Gaussian Process Regression for Sensorless Grip Force Estimation of Cable-driven Elongated Surgical Instruments[J]. IEEE Robotics and Automation Letters, 2017, 2(3):1312-1319. [61]HWANG W, LIM S. Inferring Interaction Force from Visual Information without Using Physical Force Sensors[J]. Sensors, 2017, 17(11):2455. [62]WANG Z Y, WANG D M, CHEN B, et al. A Clamping Force Estimation Method Based on a Joint Torque Disturbance Observer Using PSO-BPNN for Cable-driven Surgical Robot End-effectors[J]. Sensors(Basel), 2019, 19(23):5291. [63]XUE R F, DU Z J, YAN Z Y, et al. An Estimation Method of Grasping Force for Laparoscope Surgical Robot Based on the Model of a Cable-pulley System[J]. Mechanism and Machine Theory, 2019, 134:440-454. |
[1] | LI Yingchun, NIE Aonan, YANG Mingxuan, ZHU Dingkang, QIU Ming, YANG Gengsheng. Research on Thermal Characteristics of Auxiliary Bearing in AMBs and Friction Reduction Design [J]. China Mechanical Engineering, 2024, 35(04): 646-655. |
[2] | LIANG Yongbin, FU Guang, LIN Zhigui, HE Zhicheng, ZHANG Jialuo, CHEN Tao. Design of Lane Keeping Assist Systems Based on Improved Preview Control Model [J]. China Mechanical Engineering, 2024, 35(03): 548-558. |
[3] | HUANG Wei, CHI Cheng. Analysis for Aero -elastic Characteristics of Prop-Rotor in Hover with a Swept Tip [J]. China Mechanical Engineering, 2024, 35(02): 191-200. |
[4] | XU Zuolin, HUANG Chuanzhen, LIU Huanlian, LIU Dun. Coating Technology and Mechanism of Modified Diamond Powder by Surface Coating of WC Powders [J]. China Mechanical Engineering, 2024, 35(02): 208-214. |
[5] | YUE Jianfeng, LONG Xinyu, HUANG Yunlong, GUO Jialong, LIU Wenji. On-line Identification of Narrow Gap P-GMAW Sidewall Fusion States Based on Arc Acoustic Signals [J]. China Mechanical Engineering, 2024, 35(02): 244-250,259. |
[6] | DU Xu, CHANG Zexin, ZHENG Junqiang, REN Pengfei. A Real-time Tool Path Smoothing Algorithm Considering Joint Jerk Constraints [J]. China Mechanical Engineering, 2024, 35(02): 280-286. |
[7] | SUN Yuxiang, CHEN Li, LONG Bo, WANG Yanping, LIU Shihua, JIA Kun. Intelligent Layout for Pipeline Supports of Nuclear Power Plant under Complex Load [J]. China Mechanical Engineering, 2024, 35(02): 317-323,336. |
[8] | LI Mozhi, ZHU Wenfeng, WANG Shunchao. Roller Pose Compensation in Automotive Body Roll-hemming Forming Process with Adhesive for Dimensional Deviation [J]. China Mechanical Engineering, 2024, 35(02): 364-370. |
[9] | WANG Weijun, YANG Guilin, DU Qinghao, CHEN Qingying, . Design of 3K Planetary Gear Reducers with No Backlash [J]. China Mechanical Engineering, 2024, 35(01): 36-44,55. |
[10] | GAO Jin, CUI Haibing, FAN Tao, LI Ang, DU Zunfeng. A Structural Reliability Calculation Method Based on Adaptive Kriging Ensemble Model [J]. China Mechanical Engineering, 2024, 35(01): 83-92. |
[11] | SUN Haitao, ZHAN Mei, FAN Xiaoguang, GUO Jing, HAN Chao, ZHANG Jun. Research Progresses and Prospects of Compression Molding of High-performance PBX [J]. China Mechanical Engineering, 2024, 35(01): 160-180. |
[12] | ZHU Fuxian, QIU Gang, ZHU Xingmin, XU Xianyi, ZHOU Jinyu. Failure Mode and Progressive Damage Analyses of Carbon-glass Hybrid Composite Single Nail and Single Shear Bolted Joints [J]. China Mechanical Engineering, 2023, 34(23): 2781-2793. |
[13] | HAO Zhuangzhuang, ZHANG Qingchun, HU Yunbo, GUO Yibin, WANG Donghua, LI Wanyou. Research on Influences of Tooth Friction and Geometric Eccentricity Errors on Mesh Stiffness of Profile Shifted Spur Gear Pairs [J]. China Mechanical Engineering, 2023, 34(23): 2812-2823. |
[14] | YU Shubo, LIU Zhansheng, ZHAO Chen. Dynamics Simulation Data Driven Domain Adaptive Intelligent Fault Diagnosis [J]. China Mechanical Engineering, 2023, 34(23): 2832-2841. |
[15] | LIU Xiaobao, YAN Qingxiu, YI Bin, YAO Tingqiang, GU Wenjuan. Optimization of Process Parameters in Process Manufacturing Based on Ensemble Learning and Improved Particle Swarm Optimization Algorithm [J]. China Mechanical Engineering, 2023, 34(23): 2842-2853. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||