[1]丁康,李巍华,朱小勇. 齿轮及齿轮箱故障诊断实用技术[M]. 北京:机械工业出版社,2005:1-2.
DING Kang, LI Weihua, ZHU Xiaoyong. Practical Technology for Fault Diagnosis of Gear and Gearbox[M]. Beijing:Mechanical Industry Press, 2005:1-2.
[2]陈保家,刘浩涛,徐超,等. 深度置信网络在齿轮故障诊断中的应用[J]. 中国机械工程,2019,30(2):205-211.
CHEN Baojia, LIU Haotao, XU Chao, et al. Gear Fault Diagnosis Based on DBNS[J]. China Mechanical Engineering, 2019, 30(2):205-211.
[3]ZHANG Wei, PENG Gaoliang, LI Chuanhao, et al. A New Deep Learning Model for Fault Diagnosis with Good Anti-noise and Domain Adaptation Ability on Raw Vibration Signals[J]. Sensors, 2017, 17(2):425.
[4]吴春志,江鹏程,冯辅周,等. 基于一维卷积神经网络的齿轮箱故障诊断[J]. 振动与冲击,2018,37(22):51-56.
WU Chunzhi, JIANG Pengcheng, FENG Fuzhou, et al. Faults Diagnosis Method for Gearboxes Based on a 1-D Convolutional Neural Network[J]. Journal of Vibration and Shock, 2018, 37(22):51-56.
[5]胡茑庆,陈徽鹏,程哲,等. 基于经验模态分解和深度卷积神经网络的行星齿轮箱故障诊断方法[J]. 机械工程学报,2019,55(7):9-18.
HU Niaoqing, CHEN Huipeng, CHENG Zhe, et al. Fault Diagnosis for Planetary Gearbox Based on EMD and Deep Convolutional Neural Networks[J]. Journal of Mechanical Engineering, 2019, 55(7):9-18.
[6]PAN S J, YANG Q. A Survey on Transfer Learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10):1345-1359.
[7]TZENG E, HOFFMAN J, ZHANG Ning, et al. Deep Domain Confusion:Maximizing for Domain Invariance[J]. arXiv Preprint arXiv:1412.3474, 2014.
[8]LONG Mingsheng, CAO Yue, WANG Jianmin, et al. Learning Transferable Features with Deep Adaptation Networks[C]∥International Conference on Machine Learning.Lille, 2015:97-105.
[9]LONG Mingsheng, ZHU Han, WANG Jianmin, et al. Deep Transfer Learning with Joint Adaptation Networks[C]∥International Conference on Machine Learning.Sydney, 2017:2208-2217.
[10]ZHU Yongchun, ZHUANG Fuzhen, WANG Jindong, et al. Deep Subdomain Adaptation Network for Image Classification[J]. IEEE Transactions on Neural Networks and Learning Systems,2021, 32(4):1713-1722.
[11]LI Xiang, ZHANG Wei, DING Qian, et al. Multi-Layer Domain Adaptation Method for Rolling Bearing Fault Diagnosis[J]. Signal Processing, 2019, 157:180-197.
[12]YANG Bin, LEI Yaguo, JIA Feng, et al. An intelligent Fault Diagnosis Approach Based on Transfer Learning from Laboratory Bearings to Locomotive Bearings [J]. Mechanical Systems and Signal Processing, 2019, 122:692-706.
[13]HAN Te, LIU Chao, YANG Wenguang, et al. Deep Transfer Network with Joint Distribution Adaptation:a New Intelligent Fault Diagnosis Framework for Industry Application[J]. ISA Transactions, 2020, 97:269-281.
[14]BORGWARDT K M, GRETTON A, RASCH M J, et al. Integrating Structured Biological Data by Kernel Maximum Mean Discrepancy[J]. Bioinformatics, 2006, 22(14):e49-e57.
[15]KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Image Net Classification with Deep Convolutional Neural Networks[C]∥Advances in Neural Information Processing Systems. Lake Tahoe, 2012:1097-1105.
[16]GRETTON A, SEJDINOVIC D, STRATHMANN H, et al. Optimal Kernel Choice for Large-scale Two-sample Tests[C]∥Advances in Neural Information Processing Systems. Lake Tahoe, 2012:1205-1213.
[17]雷亚国,杨彬,杜兆钧,等. 大数据下机械装备故障的深度迁移诊断方法[J]. 机械工程学报,2019,55(7):1-8.
LEI Yaguo, YANG Bin, DU Zhaojun, et al. Deep Transfer Diagnosis Method for Machinery in Big Data Era[J]. Journal of Mechanical Engineering, 2019, 55(7):1-8.
[18]LEE D H. Pseudo-label:The Simple and Efficient Semi-supervised Learning Method for Deep Neural Networks[C]∥International Conference on Machine Learning Workshop on Challenges in Representation Learning. Atlanta, 2013:16-21.
[19]GANIN Y, LEMPITSKY V. Unsupervised Domain Adaptation by Backpropagation[C]∥International Conference on Machine Learning. Lille,2015:1180-1189.
|