China Mechanical Engineering ›› 2021, Vol. 32 ›› Issue (23): 2785-2798.DOI: 10.3969/j.issn.1004-132X.2021.23.002
Previous Articles Next Articles
DING Wenfeng;LI Benkai;FU Yucan;XU Jiuhua
Online:
2021-12-10
Published:
2021-12-23
丁文锋;李本凯;傅玉灿;徐九华
作者简介:
丁文锋,男,1978年生,教授、博士研究生导师。研究方向为航空航天难加工材料高效精密加工技术。E-mail:dingwf2000@vip.163.com。
基金资助:
CLC Number:
DING Wenfeng, LI Benkai, FU Yucan, XU Jiuhua. Research Status and Development Prospect of Machining Technology for Turbine Disc Slots[J]. China Mechanical Engineering, 2021, 32(23): 2785-2798.
丁文锋, 李本凯, 傅玉灿, 徐九华. 涡轮盘榫槽加工技术现状与展望[J]. 中国机械工程, 2021, 32(23): 2785-2798.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2021.23.002
[1]姜雪梅, 赵鹏飞. 航空发动机关键转动部件加工技术[J]. 航空制造技术, 2014(7):44-48. JIANG Xuemei, ZHAO Pengfei. Machining Technique of Aeroengine Critical Rotating Component[J]. Aeronautical Manufacturing Technology, 2014(7):44-48. [2]卢素花, 史继伟. 高温合金低压涡轮盘机械加工技术研究[J]. 中国新技术新产品, 2013(4):23-24. LU Suhua, SHI Jiwei. Research on Machining Technology of High-temperature Alloy Low-pressure Turbine Disk[J]. China New Technologies and Products, 2013(4):23-24. [3]雷驰, 温卫东, 崔海涛. 通用过渡圆弧改进设计与榫齿连接结构多变量优化[J]. 航空动力学报, 2015, 30(5):1178-1183. LEI Chi, WEN Weidong, CUI Haitao. Improved Design of Universal Transition Arc and Multivariable Optimization of Tenon-tooth Connection Structure[J]. Journal of Aerospace Power, 2015, 30(5):1178-1183. [4]申秀丽, 张野, 龙丹, 等. 涡轮榫接结构多层次设计优化方法[J]. 航空动力学报, 2015, 30(12):2824-2832. SHEN Xiuli, ZHANG Ye, LONG Dan, et al. Multi-level Design and Optimization of Turbine Joint Structure[J]. Journal of Aerospace Power, 2015, 30(12):2824-2832. [5]李伟. 航空发动机叶片失效分析中的共性问题[J]. 燃气涡轮试验与研究, 2002(2):28-30. LI Wei. Common Characteristics in Failure Analysis of Aeroengine Blade[J]. Gas Turbine Experiment and Research, 2002(2):28-30. [6]蒲一民. 涡轮盘榫槽线切割加工工艺研究[J]. 航天制造技术, 2016(2):37-40. PU Yimin. Research on WEDM Process of Turbine Groove[J]. Aerospace Manufacturing Technology, 2016(2):37-40. [7]WANG Y R, WANG X C, ZHONG B, et al. Estimation of Fatigue Parameters in Total Strain Life Equation for Powder Metallurgy Superalloy FGH96 and Other Metallic Materials[J]. International Journal of Fatigue, 2019, 122:116-124. [8]LI X, GUAN C M, ZHAO P. Influences of Milling and Grinding on Machined Surface Roughness and Fatigue Behavior of GH4169 Superalloy Workpieces[J]. Chinese Journal of Aeronautics, 2018, 31(6):1399-1405. [9]杜劲. 粉末高温合金FGH95高速切削加工表面完整性研究[D]. 济南:山东大学, 2012. DU Jing. Surface Integrity for High Speed Machining of Powder Metallurgy Superalloy FGH95[D]. Jinan:Shandong University, 2012. [10]SHI Z Y, LIU Z Q, GUO Y B. An Assessment, Definition, and Determination of the Minimum Uncut Chip Thickness of Microcutting and Impact on Machining New Powder Metallurgy Nickel-based Superalloys[C]∥ASME International Mechanical Engineering Congress and Exposition. Denver, 2011:691-700. [11]LAI X M, LI H T, LI C F, et al. Modeling and Analysis of Micro Scale Milling Considering Size Effect, Micro Cutter Edge Radius and Minimum Chip Thickness[J]. International Journal of Machine Tools & Manufacture, 2008, 48(1):1-14. [12]SON S M, LIM H S, AHN J H. Effects of the Friction Coefficient on the Minimum Cutting Thickness in Micro Cutting[J]. International Journal of Machine Tools & Manufacture, 2005, 45(4/5):529-535. [13]YUAN Z J, ZHOU M, DONG S. Effect of Diamond Tool Sharpness on Minimum Cutting Thickness and Cutting Surface Integrity in Ultraprecision Machining[J]. Journal of Materials Processing Technology, 1996, 62:327-330. [14]BISSACCO G, HANSEN H N, SLUNSKY J. Modeling the Cutting Edge Radius Size Effect for Force Prediction in Micro Milling[J]. CIRP Annals, 2008, 57(1):113-116. [15]QIAO Y, GUO P, CHEN H, et al. Chip Deformation Mechanism during Drilling of Nickel-based Superalloy FGH97[C]∥ IOP Conference Series:Materials Science and Engineering. Xiamen:IOP Publishing, 2019:012017. [16]La MONACA A, AXINTE D A, LIAO Z, et al. Towards Understanding the Thermal History of Microstructural Surface Deformation When Cutting a Next Generation Powder Metallurgy Nickel-base Superalloy[J]. International Journal of Machine Tools and Manufacture, 2021, 168:103765. [17]LI B K, MIAO Q, LI M, et al. An Investigation on Machined Surface Quality and Tool Wear during Creep Feed Grinding of Powder Metallurgy Nickel-based Superalloy FGH96 with Alumina Abrasive Wheels[J]. Advances in Manufacturing, 2020, 8(2):160-176. [18]DING W F, ZHANG L, LI Z, et al. Review on Grinding-induced Residual Stresses in Metallic Materials[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(9):2939-2968. [19]DU J, LIU Z Q. Damage of the Machined Surface and Subsurface in Orthogonal Milling of FGH95 Superalloy[J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(5):1573-1581. [20]DU J, LIU Z Q, LYU S Y. Deformation-phase Transformation Coupling Mechanism of White Layer Formation in High Speed Machining of FGH95 Ni-based Superalloy[J]. Applied Surface Science, 2014, 292:197-203. [21]杜劲, 刘战强. 夹杂物对FGH95粉末高温合金切削加工力学特性的影响[J]. 组合机床与自动化加工技术, 2011(4):19-23. DU Jing, LIU Zhanqiang. Influenceof Non-metal Inclusions on FGH95 P/M Superalloy Cutting Mechanical Characteristics[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2011(4):19-23. [22]徐正扬. 发动机叶片精密电解加工关键技术研究[D]. 南京:南京航空航天大学, 2008. XU Zhengyang. Key Technologies Research on Precision Turbine Blade ECM[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2008. [23]ARRAZOLA P J, RECH J, M′SAOUBI R, et al. Broaching:Cutting Tools and Machine Tools for Manufacturing High Quality Features in Components[J]. CIRP Annals:Manufacturing Technology, 2020, 69(2):554-577. [24]于建华, 张渝. 粉末冶金涡轮盘精密加工技术研究现状[J]. 航空制造技术, 2018, 61(15):28-36. YU Jianhua, ZHANG Yu. Research Status of Precision Machining Technology of Powder Metallurgy[J]. Aeronautical Manufacturing Technology, 2018, 61(15):28-36. [25]万秀屏, 边景全, 孙爱鹏. 一至六级双翼涡轮盘榫槽加工工艺研究[J]. 中国新技术新产品, 2018(19):54-55. WAN Xiuping, BIAN Jingquan, SUN Aipeng. Study on Machining Process of Tongue and Groove of One to Six Stage Double-wing Turbine Disk[J]. China New Technologies and Products, 2018(19):54-55. [26]刘健. 拉削加工在航空发动机制造的应用研究[J]. 中国新技术新产品, 2013(16):134. LIU Jian. Researchon the Application of Broaching in Aero-engine Manufacturing[J]. China New Technologies and Products, 2013(16):134. [27]HOSSEINI A, KISHAWY H A. Prediction of Cutting Forces in Broaching Operation[J]. Journal of Advanced Manufacturing Systems, 2013, 12(1):1-14. [28]隋景丛, 孟震威. 某型发动机风扇盘超大榫槽高效拉削工艺研究[J]. 中国新技术新产品, 2013(4):27-28. SUI Jingcong, MENG Zhenwei. Research on the High-efficiency Broaching Process of a Certain Type of Engine Fan Disk with a Large Tongue and Groove[J]. China New Technologies and Products, 2013(4):27-28. [29]王莉莉. 榫槽拉削的分度补偿和径向补偿方法研究[J]. 机械工程师, 2016(4):252-253. WANG Lili. Research on Indexing Compensation and Radial Compensation Method of Tongue and Groove Broaching[J]. Mechanical Engineer, 2016(4):252-253. [30]邢义. 拉削刀具创新技术与产品[J]. 金属加工(冷加工), 2011(7):49-51. XING Yi. Innovative Technology and Products of Broaching Tools[J]. Metal Working(Metal Cutting), 2011(7):49-51. [31]LOIZOU J, TIAN W, ROBERTSON J, et al. Automated Wear Characterization for Broaching Tools Based on Machine Vision Systems[J]. Journal of Manufacturing Systems, 2015, 37:558-563. [32]付刚, 柳政. 燃气轮机轮盘榫槽拉削方法[J]. 金属加工(冷加工), 2015(18):54-55. FU Gang, LIU Zheng. Broaching Method for Tongue and Groove of Gas Turbine Wheel Disc[J]. Metal Working(Metal Cutting), 2015(18):54-55. [33]周月香, 陈富新, 冯燕坪. 高精度燃气轮机轮槽的铣削加工[J]. 热力透平, 2007(2):138-140. ZHOU Yuexiang, CHEN Fuxin, FENG Yanping. Milling of Disc Groove with High Precision in Gas Turbine[J]. Thermal Turbine, 2007(2):138-140. [34]KLOCKE F, SEIMANN M, BINDER M, et al. Milling of Fir-tree Slots in Allvac 718 Plus[J]. Procedia CIRP, 2018, 77:409-412. [35]臧笑宇, 闫龙, 史韵琦. 圆弧型榫槽风扇轮盘加工及检测技术研究[J]. 中国新技术新产品, 2012(17):135. ZANG Xiaoyu, YAN Long, SHI Yunqi. Research on Processing and Testing Technology of Arc-type Tongue and Groove Fan Wheel Disk[J]. China New Technologies and Products, 2012(17):135. [36]梁松山, 李克, 孙世伟. 航空发动机涡轮机匣榫槽加工工艺研究[J]. 金属加工(冷加工), 2013(15):23-25. LIANG Songshan, LI Ke, SUN Shiwei. Research on Machining Process of Tongue and Groove of Aero-engine Turbine Casing[J]. Metal Working(Metal Cutting), 2013(15):23-25. [37]刘扬. 枞树型轮槽加工方法研究[J]. 机械工程师, 2014(1):259-260. LIU Yang. Research on Machining Method of Fir Tree-shaped Wheel Groove[J]. Mechanical Engineer, 2014(1):259-260. [38]王开封, 乔雷, 徐艳, 等. 某型发动机风扇盘加工工艺研究[J]. 中国新技术新产品, 2020(7):41-42. WANG Kaifeng, QIAO Lei, XU Yan, et al. Research on the Processing Technology of a Certain Engine Fan Disk[J]. China New Technologies and Products, 2020(7):41-42. [39]李季, 吴宏春, 赵鹏飞, 等. 风扇轮盘圆弧榫槽加工研究[J]. 中国新技术新产品, 2016(3):97-98. LI Ji, WU Hongchun, ZHAO Pengfei, et al. Research on Machining of Arc Tenon Groove for Fan Wheel Disk[J]. China New Technologies and Products, 2016(3):97-98. [40]秦琦栋, 桂启志, 刘良玉, 等. 汽轮机转子枞树型轮槽铣削效率提升研究[J]. 机械工程师, 2016(11):245-248. QIN Qidong, GUI Qizhi, LIU Liangyu, et al. Research on Improving the Milling Efficiency of Fir Tree-shaped Wheel Groove of Steam Turbine Rotor[J]. Mechanical Engineer, 2016(11):245-248. [41]徐艳, 李俊成. 高温合金涡轮盘枞树型榫槽的铣削试验研究[J]. 汽轮机技术, 2002(6):379-380. XU Yan, LI Juncheng. An Experimental Study on Milling for High-temperature Alloy Parameter with Fir-slot[J]. Turbine Technology, 2002(6):379-380. [42]张昌成, 朱德强, 孙盛丽. 动力涡轮盘榫槽拉刀设计[J]. 汽轮机技术, 2003(2):127-128. ZHANG Changcheng, ZHU Deqiang, SUN Sheng-li. Design of the Tenoning Drawshave about the Dynamic Turbines Plate[J]. Turbine Technology, 2003(2):127-128. [43]KLOCKE F, VOGTEL P, GIERLINGS S, et al. Broaching of Inconel 718 with Cemented Carbide[J]. Production Engineering, 2013, 7(6):593-600. [44]LI B K, DAI C W, DING W F, et al. Prediction on Grinding Force during Grinding Powder Metallurgy Nickel-based Superalloy FGH96 with Electroplated CBN Abrasive Wheel[J]. Chinese Journal of Aeronautics, 2021, 34(8):65-74. [45]MIAO Q, LI H N, DING W F. On the Temperature Field in the Creep Feed Grinding of Turbine Blade Root:Simulation and Experiments[J]. International Journal of Heat and Mass Transfer, 2020, 147:118957. [46]CAO Y, ZHU Y J, DING W F, et al. Vibration Coupling Effects and Machining Behavior of Ultrasonic Vibration Plate Device for Creep-feed Grinding of Inconel 718 Nickel-based Superalloy[J/OL]. Chinese Journal of Aeronautics. [2021-09-12]. https:∥doi. org/10. 1016/j. cja. 2020. 12. 039. [47]丁凯, 李奇林, 苏宏华, 等. 硬脆材料超声辅助磨削技术研究现状及展望[J]. 金刚石与磨料磨具工程, 2020, 40(1):5-14. DING Kai, LI Qilin, SU Honghua, et al. Study Status and Future Prospects on Ultrasonic Assisted Grinding of Hard and Brittle Materials[J]. Diamond & Abrasives Engineering, 2020, 40(1):5-14. [48]CURTIS D T, SOO S L, ASPINWALL D K, et al. Electrochemical Superabrasive Machining of a Nickel-based Aeroengine Alloy Using Mounted Grinding Points[J]. CIRP Annals:Manufacturing Technology, 2009, 58(1):173-176. [49]SHI Z D, ELFIZY A, ATTIA H. Deep Profiled Slot Grinding on a Nickel-based Alloy with Electroplated CBN Wheels[J]. Advanced Materials Research, 2016, 1136:3-8. [50]ASPINWALL D K, SOO S L, CURTIS D T, et al. Profiled Superabrasive Grinding Wheels for the Machining of a Nickel Based Superalloy[J]. CIRP Annals:Manufacturing Technology, 2007, 56(1):335-338. [51]LI X, QIN B, WANG Z, et al. Grinding of Fir Tree Slots of Powder Metallurgy Superalloy FGH96 Using Profiled Electroplated CBN Wheel[J]. International Journal of Advanced Manufacturing Technology, 2021, 115:311-317. [52]CHEN J, FU Y, QIAN N, et al. Investigation on Cooling Behavior of Axially Rotating Heat Pipe in Profile Grinding of Turbine Blade Slots[J]. Applied Thermal Engineering, 2021, 182:116031. [53]AMALNIK M S, MCGEOUGH J A. Intelligent Concurrent Manufacturability Evaluation of Design for Electrochemical Machining[J]. Journal of Materials Processing Technology, 1996, 61(1/2):130-139. [54]KLOCKE F, HERRIG T, ZEIS M, et al. Experimental Investigations of Cutting Rates and Surface Integrity in Wire Electrochemical Machining with Rotating Electrode[J]. Procedia CIRP, 2018, 68:725-730. [55]SOO S L, ANTAR M T, ASPINWALL D K, et al. The Effect of Wire Electrical Discharge Machining on the Fatigue Life of Ti-6Al-2Sn-4Zr-6Mo Aerospace Alloy[J]. Procedia CIRP, 2013, 6:215-219. [56]王超, 云健, 石龙飞. 线切割燕尾形静叶榫槽工艺装备改造[J]. 汽轮机技术, 2009, 51(3):236-238. WANG Chao, YUN Jian, SHI Longfei. Fixture Modificationfor Linear Cutting Dovetail Groove for Stationary Blade Attachment[J]. Turbine Techno-logy, 2009, 51(3):236-238. [57]AYESTA I, IZQUIERDO B, FLANO O, et al. Influence of the WEDM Process on the Fatigue Behavior of Inconel718[J]. International Journal of Fatigue, 2016, 92:220-233. [58]WELLING D. Results of Surface Integrity and Fatigue Study of Wire-EDM Compared to Broaching and Grinding for Demanding Jet Engine Components Made of Inconel 718[J]. Procedia CIRP, 2014, 13:339-344. [59]FANG X, HAN Z, ZHU D. Wire Electrochemical Trimming of Wire-EDMed Surface for the Manufacture of Turbine Slots[J]. Procedia CIRP, 2020, 95:700-705. [60]于洽, 曾永彬, 徐坤, 等. 阳极振动往复运丝微细电解线切割试验研究[J]. 中国机械工程, 2014, 25(3):295-299. YU Qia, ZENG Yongbin, XU Kun, et al. Research on Anode Vibration and Wire Electrode Travelling in Micro Wire Electrochemical Machining[J]. China Mechanical Engineering, 2014, 25(3):295-299. [61]BERGS T, ROMMES B, SMEETS G, et al. ECM Roughing of Profiled Grooves in Nickel-based Alloys for Turbomachinery Applications[J]. Procedia Manufacturing, 2019, 40:22-26. [62]KIM B H, NA C W, LEE Y S, et al. Micro Electrochemical Machining of 3D Micro Structure Using Dilute Sulfuric Acid[J]. CIRP Annals:Manufacturing Technology, 2005, 54(1):191-194. [63]邹祥和. 线电极脉动态电解切割加工基础研究[D]. 南京:南京航空航天大学, 2017. ZOU Xianghe. Fundamental Research on Fluctuating Wire Electrochemical Machining[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017. [64]KLOCKE F, WELLING D, KLINK A, et al. Evaluation of Advanced Wire-EDM Capabilities for the Manufacture of Fir Tree Slots in Inconel 718[J]. Procedia CIRP, 2014, 14:430-435. [65]KLOCKE F, WELLING D, DIECKMANN J, et al. Developments in Wire-EDM for the Manufacturing of Fir Tree Slots in Turbine Discs Made of Inconel 718[J]. Key Engineering Materials, 2012, 504/506:1177-1182. [66]BERGS T, SMEETS G, SEIMANN M, et al. Surface Integrity and Economical Assessment of Alternative Manufactured Profiled Grooves in a Nickel-based Alloy[J]. Procedia Manufacturing, 2018, 18:112-119. [67]曲宁松, 刘洋, 张峻中, 等. 电解铣削加工技术研究进展及展望[J]. 电加工与模具, 2021(2):1-14. QU Ningsong, LIU Yang, ZHANG Junzhong, et al. State-of-art and Outlook on Electrochemical Milling[J]. Electro Machining & Mould, 2021(2):1-14. [68]KLOCKE F, BERGS T, DOEBBELER B, et al. Multicriteria Assessment of Machining Processes for Turbine Disc Slotting[J]. Journal of Manufacturing and Materials Processing, 2018, 2(2):32. [69]徐岩, 张川. 拉刀设计对航空发动机涡轮盘榫槽型面的影响[J]. 航空制造技术, 2010(15):50-52. XU Yan, ZHANG Chuan. Influence of Broach Design on Aeroengine Turbine Disk Fir Tree Groove[J]. Aeronautical Manufacturing Technology, 2010(15):50-52. [70]牛梦华, 彭会文, 刘曦, 等. 涡轮盘枞树形榫槽机夹拉刀设计[J]. 航空制造技术, 2012(14):70-72. NIU Menghua, PENG Huiwen, LIU Xi, et al. Design of Special Type Mortise Broach[J]. Aeronautical Manufacturing Technology, 2012(14):70-72. [71]徐岩, 张川. 特型榫槽拉刀设计的研究[J]. 航空制造技术, 2011(14):74-78. XU Yan, ZHANG Chuan. Research on the Design of Special Type Mortise Broach[J]. Aeronautical Manufacturing Technology, 2011(14):74-78. [72]SEIMANN M, PENG B X, FISCHERSWORRING B A, et al. Model-based Analysis in Finish Broaching of Inconel 718[J]. International Journal of Advanced Manufacturing Technology, 2018, 97:3751-3760. [73]WANG B, WANG N J, SUN S L, et al. Design Method of Turbine Fir-tree Blade Root Tenon Slot Broach[J]. Advanced Materials Research, 2011, 305:177-180. [74]SONG W, KEANE A, REES J, et al. Turbine Blade Fir-tree Root Design Optimisation Using Intelligent CAD and Finite Element Analysis[J]. Computers & Structures, 2002, 80(24):1853-1867. [75]ZL E, ARAGHIZAD A E, BUDAK E. Broaching Tool Design through Force Modelling and Process Simulation[J]. CIRP Annals:Manufacturing Technology, 2020, 69(1):53-56. [76]OZTURK O, BUDAK E. Modeling of Broaching Process for Improved Tool Design[C]∥ASME International Mechanical Engineering Congress and Exposition. Washington DC,2003:291-300. [77]易林峰, 吴时盛, 李克, 等. 小尺寸轮盘榫槽拉刀结构参数优化设计研究[J]. 工具技术, 2021, 55(6):57-63. YI Linfeng, WU Shisheng, LI Ke, et al. Research on Structural Parameter Optimization Design of Small-size Disc Tenon Broach[J]. Tool Engineering, 2021, 55(6):57-63. [78]高翔, 周来水, 赵西松, 等. 航空发动机榫槽拉刀快速设计系统研究与开发[J]. 机械制造与自动化, 2017, 46(4):36-39. GAO Xiang, ZHOU Laishui, ZHAO Xisong, et al. Research and Development of Rapid Design System of Mortise Broaches for Aero-engine[J]. Machine Building & Automation, 2017, 46(4):36-39. [79]李志辉, 周来水, 卫炜, 等. 基于产品模型的涡轮盘榫槽拉刀快速设计系统[J]. 航空制造技术, 2018, 61(22):70-76. LI Zhihui, ZHOU Laishui, WEI Wei, et al. Rapid Design System of Mortise Broach for Turbine Disk Based on Product Model[J]. Aeronautical Manufacturing Technology, 2018, 61(22):70-76. [80]许生福, 陈惠贤, 陈明, 等. 轮槽加工中铣削力与铣削温度分布规律研究[J]. 现代制造工程, 2015(1):78-80. XU Shengfu, CHEN Huixian, CHEN Ming, et al. Study on Milling Force and Milling Temperature Distribution of Milling Cutter with Fir-slot[J]. Modern Manufacturing Engineering, 2015(1):78-80. [81]CHEN H X, CHU G, WU M P, et al. Research on Geometric Modeling Method of Finishing Milling Cutter with Fir-slot[J]. Key Engineering Materials, 2014, 589:438-443. [82]SU X, WANG G, LI J, et al. Accurate 3-D Parameterised Modelling of Complex Milling Cutter with Fir-slots for Rotor-groove Machining[J]. International Journal of Manufacturing Research, 2016, 11(4):309-321. [83]丁文锋, 苗情, 李本凯, 等. 面向航空发动机的镍基合金磨削技术研究进展[J]. 机械工程学报, 2019, 55(1):189-215. DING Wenfeng, MIAO Qing, LI Benkai, et al. Review on Grinding Technology of Nickel-based Superalloys Used for Aero-engine[J]. Journal of Mechanical Engineering, 2019, 55(1):189-215. [84]吴红庆, 吴晓春. 国内外高速钢的研究现状和进展[J]. 模具制造, 2017, 17(12):93-100. WU Hongqing, WU Xiaochun. Research Status and Development of High Speed Steel at Home and Abroad[J]. Die & Mould Manufacture, 2017, 17(12):93-100. [85]VOGTEL P, KLOCKE F, LUNG D. High Performance Machining of Profiled Slots in Nickel-based-superalloys[J]. Procedia CIRP, 2014, 14:54-59. [86]程相飞, 张土军. FGH95粉末高温合金的拉削研究[J]. 航空制造技术, 2015(15):69-71. CHENG Xiangfei, ZHANG Tujun. Research on Broaching of FGH95 Powder Metallurgy Super-alloy[J]. Aeronautical Manufacturing Technology, 2015(15):69-71. [87]汪津泽, 汪超林. 汽轮机转子轮槽分屑粗铣刀的研制[J]. 工具技术, 2003(10):42-43. WANG Jinze, WANG Chaolin. Development of Rough Milling Cutter for Dividing Chips of Steam Turbine Rotor Wheel Groove[J]. Tool Engineering, 2003(10):42-43. [88]孙宽余. GH136高温合金拉削的试验研究[J]. 长沙交通学院学报, 1989(1):11-18. SUN Kuanyu. The Test Research of Broaching Process for High Temperature Alloy GH136[J]. Journal of Changsha Communications University, 1989(1):11-18. [89]TELESMAN J, GABB T P, KANTZOS P T, et al. Effect of Broaching Machining Parameters, Residual Stresses and Cold Work on Fatigue Life of Ni-based Turbine Disk P/M Alloy at 650 ℃[J]. International Journal of Fatigue, 2021, 150:106328. [90]HERRIG T, OWALD K, LOCHMAHR I, et al. Geometrical Analysis of Wire Electrochemical Machining for the Manufacture of Turbine Disc Slots[J]. Procedia CIRP, 2020, 95:694-699. [91]BUREK J, BABIARZ R, BUK J, et al. The Accuracy of Finishing WEDM of Inconel 718 Turbine Disc Fir Tree Slots[J]. Materials, 2021, 14(3):562. [92]KLOCKE F, WELLING D, KLINK A, et al. Quality Assessment through In-process Monitoring of Wire-EDM for Fir Tree Slot Production[J]. Procedia CIRP, 2014, 24:97-102. [93]SHARMA P, CHAKRADHAR D, NARENDR-ANATH S. Precision Manufacturing of Turbine Wheel Slots by Trim-offset Approach of WEDM[J]. Precision Engineering, 2021, 71:293-303. [94]郭涛, 祁俊轩, 陈佳, 等. 风扇盘拉削榫槽工序的检测方法和注意事项[C]∥第十八届沈阳科学学术年会论文集. 沈阳, 2021:222-230. GUO Tao, QI Junxuan, CHEN Jia, et al. Detection Methods and Precautions for the Process of Broaching the Tongue and Groove of the Fan Disc[C]∥Proceedings of the 18th Shenyang Science Conference. Shenyang, 2021:222-230. [95]WANG J, SANCHEZ J A, ITURRIOZ J A, et al. Geometrical Defect Detection in the Wire Electrical Discharge Machining of Fir-tree Slots Using Deep Learning Techniques[J]. Applied Sciences, 2019, 9(1):90. [96]CHAMANFAR A, MONAJATI H, ROSENBAUM A, et al. Microstructure and Mechanical Properties of Surface and Subsurface Layers in Broached and Shot-peened Inconel-718 Gas Turbine Disc Fir-trees[J]. Materials Characterization, 2017, 132:53-68. [97]SHI D, GINDY N N. Tool Wear Predictive Model Based on Least Squares Support Vector Machines[J]. Mechanical Systems and Signal Processing, 2007, 21(4):1799-1814. [98]LIU Y, HU X, YAN S, et al. Tool Condition Monitoring and Degradation Estimation in Rotor Slot Machining Process[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(1):39-48. |
[1] | SUN Aihong, SONG Yuchuan, YANG Yunfan, LEI Qi. Dual Resource-constrained Flexible Job Shop Scheduling Algorithm Considering Machining Quality of Key Jobs [J]. China Mechanical Engineering, 2022, 33(21): 2590-2600. |
[2] | Ji Shiming, Wei Wei, Jin Mingsheng, Zhang Li, Huang Xihuan, Pan Ye. Mold Finishing for Multi-factor and Multi-objective [J]. China Mechanical Engineering, 2016, 27(20): 2802-2806. |
[3] | Pang Guibing , Xu Wenji, Zhou Jinjin. Study on Electrochemical Mechanical Precision Finishing Technology [J]. China Mechanical Engineering, 2016, 27(19): 2589-2593,2601. |
[4] | Liu Zhanqiang, He Meng, Zhao Jian. Mechanical Machining Strengthening Mechanism and Material Processing Technology——a Review [J]. China Mechanical Engineering, 2015, 26(3): 403-413. |
[5] |
ZHANG Hua-1, XU Jia-Wen-2, DIAO Jian-She-2.
Simulation and Experimental Research on Jet Electrolytic Drilling
[J]. China Mechanical Engineering, 2011, 22(21): 2624-2627.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||