[1]王震虎, 周巧英, 刘开勇, 等. 基于响应面模型的白车身多目标轻量化设计 [J]. 中国机械工程, 2018, 29(1):75-81.
WANG Zhenhu, ZHOU Qiaoying, LIU Kaiyong, et al. Multi-object Lightweight Design of BIWs Based on Response Surface Model [J]. China Mechanical Engineering, 2018, 29(1):75-81.
[2]WANG G G, SHAN S. Review of Metamodeling Techniques in Support of Engineering Design Optimization [J]. Journal of Mechanical Design, 2007, 129(4):370-380.
[3]ROMERO D A, AMON C H, FINGER S. Multiresponse Metamodeling in Simulation-based Design Applications[J]. Journal of Mechanical Design, 2012, 134(9):1-15.
[4]LI P, LI H Y, HUANG Y B, et al. A High Sparse Response Surface Method Based on Combined Bases for Complex Products Optimization[J]. Advances in Engineering Software, 2019, 129:1-12.
[5]李永华, 梁校嘉, 宫琦. 基于双点加点策略的改进Kriging响应面可靠度计算方法[J]. 中国机械工程, 2019, 30(17):2051-2057.
LI Yonghua, LIANG Xiaojia, GONG Qi. Improved Kriging Response Surface Reliablility Calculation Mehtod Based on Two-point Addition Strategy [J].China Mechanical Engineering, 2019, 30(17):2051-2057.
[6]PAN S J, YANG Q. A Survey on Transfer Learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10):1345-1359.
[7]HUMBIRD K D, PETERSON J L, SPEARS B K, et al. Transfer Learning to Model Inertial Confinement Fusion Experiments[J].IEEE Transactions on Plasma Science, 2020, 48(1):61-70.
[8]YOSINSKI J, CLUNE J, BENGIO Y, et al. How Transferable Are Features in Deep Neural Networks? [C]∥27th International Conference on Neural Information Processing Systems. Montreal, 2014:3320-3328.
[9]张朝阳, 吉卫喜, 彭威. 基于迁移学习的数控机床节能控制决策方法 [J]. 中国机械工程, 2020, 31(23):2855-2863.
ZHANG Chaoyang, JI Weixi, PENG Wei. Decision-making Method for Energy-saving Control of CNC Machine Tools Based on Transfer Learning [J].China Mechanical Engineering, 2020, 31(23):2855-2863.
[10]WANG G G. Adaptive Response Surface Method Using Inherited Latin Hypercube Design Points[J]. Journal of Mechanical Design, 2003, 125(2):210-220.
[11]FANG K T. The Uniform Design:Application of Number-theoretic Methods in Experimental Design[J]. Acta Mathematicae Applicatae Sinica, 1980, 3(4):363-372.
[12]龙腾, 刘建, WANG G G, 等. 基于计算试验设计与代理模型的飞行器近似优化策略探讨 [J]. 机械工程学报, 2016, 52(14):79-105.
LONG Teng, LIU Jian, WANG G G, et al. Discuss on Approximate Optimization Strategies Using Design of Computer Experiments and Metamodels for Flight Vehicle Design[J]. Journal of Mechanical Engineering, 2016, 52(14):79-105.
[13]HAINES L M. Optimal Design for Neural Networks [J]. New Developments and Applications in Experimental Design, 1998, 34:152-162.
[14]CHOUEIKI M H, MOUNT-CAMPBELL C A. Training Data Development with the D-optimality Criterion [J]. IEEE Transactions on Neural Networks, 1999, 10(1):56-63.
[15]ISSANCHOU S, GAUCHI J P. Computer-aided Optimal Designs for Improving Neural Network Generalization [J]. Neural Networks :the Official Journal of the International Neural Network Society, 2008, 21(7):945-950.
[16]陈进. 人工神经网络D最优设计的一种方法[J]. 系统仿真学报, 2003,15(11):1586-1588.
CHEN Jin. A Method of D Optimum Design for Artificial Neural Network[J]. Journal of System Simulation, 2003,15(11):1586-1588.
[17]TORSNEY B, MANDAL S. Two Classes of Multiplicative Algorithms for Constructing Optimizing Distributions[J]. Computational Statistics & Data Analysis, 2006, 51(3):1591-1601.
[18]FU J C, WANG L Q. A Random-discretization Based Monte Carlo Sampling Method and Its Applications [J]. Methodology and Computing in Applied Probability, 2012, 4(1):5-25.
[19]WANG L Q, SHAN S Q, WANG G G. Mode-pursuing Sampling Method for Global Optimization on Expensive Black-box Functions [J]. Journal of Engineering Optimization, 2004, 36(4):419-438.
[20]童水光, 苗嘉智, 童哲铭, 等. 内燃叉车车架静动特性有限元分析及优化 [J]. 浙江大学学报(工学版), 2019, 53(9):1637-1646.
TONG Shuiguang, MIAO Jiazhi, TONG Zhe-ming, et al. Finite Element Analysis and Optimization for Static and Dynamic Characteristics of Diesel Forklift Frame [J]. Journal of Zhejiang University(Engineering Science), 2019, 53(9):1637-1646.
[21]LECUN Y, BENGIO Y, HINTON G. Deep Learning [J]. Nature, 2015, 521(7553):436-444.
[22]XAVIER G, ANTOINE B, BENGIO Y. Deep Sparse Rectifier Neural Networks [C]∥International Conference on Artificial Intelligence and Statistics. Fort Lauderdale, 2011:315-323.
[23]KINGMA D P, BA J L. Adam:a Method for Stochastic Optimization [C]∥3rd International Conference on Learning Representations. San Diego, 2015:1412.6980.
[24]BERGSTRA J, BARDENET R, BENGIO Y, et al. Algorithms for Hyper-parameter Optimization [C]∥International Conference on Neural Information Processing Systems. Granada, 2011:2546-2554.
[25]LI L, JAMIESON K, DESALVO G, et al. Hyperband:a Novel Bandit-based Approach to Hyperparameter Optimization[J]. Journal of Machine Learning Research, 2018, 18(1):6765-6816.
|