[1]马殿文,沈春根,张宇,等.PCD刀具车削超硬铝合金的切削性能研究[J].工具技术,2020,54(3):15-20.
MA Dianwen, SHEN Chungen, ZHANG Yu, et al. Research on Cutting Performance of PCD Tool for Turning Super-hard Aluminum Alloy[J].Tool Engineering,2020,54(3):15-20.
[2]付秀丽,艾兴,刘战强,等.高速切削加工航空铝合金7050-T7451剪切角模型研究[J].中国机械工程,2007,18(2):220-224.
FU Xiuli, AI Xing, LIU Zhanqiang, et al. Study on Shear Angle Model of Aluminum Alloy 7050-T7451 in High Speed Machining[J].China Mechanical Engineering,2007,18(2):220-224.
[3]于启勋,朱正芳.刀具材料的历史、进展与展望[J].机械工程学报,2003,39(12):62-66.
YU Qixun, ZHU Zhengfang. History Progress and Prospect of Cutting Tool Materials[J]. Journal of Mechanical Engineering,2003,39(12):62-66.
[4]何耿煌,鄢国洪,李凌祥,等.典型钛合金TC17车削过程鳞刺生成规律及其抑制措施[J], 中国机械工程,2020,31(13):1585-1592.
HE Genghuang, YAN Guohong, LI Lingxiang, et al. Scale Thorn Generation Regularity and Its Inhibitory Measures in Turning Processes of Typical Titanium Alloy TC17[J].China Mechanical Engineering,2020,31(13):1585-1592.
[5]LI A, ZHAO J, WANG D, et al. Failure Mechanisms of a PCD Tool in High-speed Face Milling of Ti-6Al-4V Alloy[J]. International Journal of Advanced Manufacturing Technology, 2013, 67(9/12):1959-1966.
[6]BUCHKREMER S, KLOCKE F, VESELOVAC D. 3D FEM Simulation of Chip Breakage in Metal Cutting[J]. The International Journal of Advanced Manufacturing Technology, 2016, 82(1/4):645-661.
[7]YU X, WANG Y G, LYU D J. A Novel Chip Breaker Structure of PCD Tool for the Reaming of 7050 Aluminum Alloy[J]. International Journal of Advanced Manufacturing Technology, 2020, 109(3/4):659-672.
[8]LUO H, WANG Y Q, ZHANG P. Effect of Cutting Parameters on Machinability of 7075-T651 Aluminum Alloy in Different Processing Methods[J]. The International Journal of Advanced Manufacturing Technology, 2020, 110(7):2035-2047.
[9]SHAMOTO E, AOKI T, SENCER B, et al. Control of Chip Flow with Guide Grooves for Continuous Chip Disposal and Chip-pulling Turning[J]. CIRP Annals:Manufacturing Technology, 2011, 60(1):125-128.
[10]JAWAHIR I S. Chip-forms, Chip Breakability and Chip Control[M]∥LAPERRIERE L, REINHART G. CIRP Encyclopedia of Production Engineering. Berlin:Springer, 2014:178-194.
[11]SOARES R B, DE JESUS A M P, NETO R J L, et al. Comparison between Cemented Carbide and PCD Tools on Machinability of a High Silicon Aluminum Alloy[J]. Journal of Materials Engineering and Performance, 2017, 26(9):4638-4657.
[12]GONZALO O, QUINTANA I, ETXARRI J. FEM Based Design of a Chip Breaker for the Machining with PCD Tools[J]. Advanced Materials Research, 2011, 223:133-141.
[13]CASCN I, SARASUA J A, ELKASEER A. Tailored Chip Breaker Development for Polycrystalline Diamond Inserts:FEM-based Design and Validation[J]. Applied Sciences, 2019, 9(19):4117.
[14]KAMIYA M, YAKOU T. Role of Second-phase Particles in Chip Breakability in Aluminum Alloys[J]. International Journal of Machine Tools and Manufacture, 2008, 48(6):688-697.
[15]WU M C, YU A B, CHEN Q J, et al. Design of Adjustable Chip Breaker for PCD Turning Tools[J]. International Journal of Mechanical Sciences, 2020, 172:105411.
[16]SASAHARA H, OBIKAWA T, SHIRAKASHI T. FEM Analysis of Cutting Sequence Effect on Mechanical Characteristics in Machined Layer[J].Journal of Materials Processing Technology, 1996, 62(4):448-453.
[17]杜茂华, 程正, 王神送, 等. 损伤演化对Ti6Al4V高速切削仿真结果的影响[J]. 航空学报, 2019, 40(7):422787.
DU Maohua, CHENG Zheng, WANG Shensong, et al. Effects of Damage Evolution on Simulation Results of High Speed Machining Ti6Al4V[J].Acta Aeronautica et Astronautica Sinica,2019, 40(7):422787.
[18]RICE J R, TRACEY D M. On the Ductile Enlargement of Voids in Triaxial Stress Fields[J]. Journal of the Mechanics and Physics of Solids, 1969, 17(3):201-217.
[19]季玉辉. 基于Johnson-Cook模型的硬物损伤数值模拟研究[D]. 南京:南京航空航天大学, 2009.
JI Yuhui. Numerical Simulation of Hard-body Foreign Object Damage Based on Johnson-Cook Model[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2009.
[20]SHI C, YU A, WU J, et al. Study on Position of Laser Cladded Chip Breaking Dot on Rake Face of HSS Turning Tool[J]. International Journal of Machine Tools and Manufacture, 2017, 122:132-148.
[21]JOMAA W, MECHRI O, LEVESQUE J, et al. Finite Element Simulation and Analysis of Serrated Chip Formation during High-speed Machining of AA7075-T651 Alloy[J]. Journal of Manufacturing Processes, 2017, 26:446-458.
[22]BALAJI A K, GHOSH R, FANG X D, et al. Performance-based Predictive Models and Optimization Methods for Turning Operations and Applications:Part 2—Assessment of Chip Forms/Chip Breakability[J]. Journal of Manufacturing Processes, 2006, 8(2):144-158.
[23]EBERLE G, JEFIMOVS K, WEGENER K. Characterisation of Thermal Influences after Laser Processing Polycrystalline Diamond Composites Using Long to Ultrashort Pulse Durations[J]. Precision Engineering, 2015, 39:16-24.
[24]IQBAL S A, MATIVENGA P T, SHEIKH M A. A Comparative Study of the Tool-chip Contact Length in Turning of Two Engineering Alloys for a Wide Range of Cutting Speeds[J]. International Journal of Advanced Manufacturing Technology, 2009, 42(1/2):30-40.
[25]SHINOZUKA J, OBIKAWA T, SHIRAKASHI T. Chip Breaking Analysis from the Viewpoint of the Optimum Cutting Tool Geometry Design[J]. Journal of Materials Processing Technology, 1996, 62(4):345-351.
[26]ZHANG Y Z, PEKLENIK J. Chip Curl, Chip Breaking and Chip Control of the Difficult-to-cut Materials[J]. CIRP Annals, 1980, 29(1):79-83.
[27]NAKAYAMA K. A Study on Chip Breaker[J]. Bulletin of JSME, 1962,17(5):142-150.
[28]LIU E L, HAN R D, TAN G Y, et al. Analysis of Chip Breaking Prediction in Cutting Aluminum Alloys[J]. Materials Science Forum, 2006, 532/533:213-216.
[29]中山一雄. 金属切削加工理论[M]. 北京:机械工业出版社, 1985.
NAKAYAMA K. Theory of Metal Cutting[M]. Beijing:China Machine Press,1985.
|