China Mechanical Engineering ›› 2022, Vol. 33 ›› Issue (04): 469-481,495.DOI: 10.3969/j.issn.1004-132X.2022.04.010
Previous Articles Next Articles
SUN Xiaojun;SONG Enzhe;YAO Chong
Online:
2022-02-25
Published:
2022-03-11
孙晓军;宋恩哲;姚崇
通讯作者:
宋恩哲(通信作者),男,1973年生,教授、博士研究生导师。研究方向为动力系统自动控制技术、船舶混合动力能量管理系统开发等。E-mail:smartengineheu@163.com。
作者简介:
孙晓军,男,1992年生,博士研究生。研究方向为船舶混合动力系统策略开发等。E-mail:18245904309@163.com。
基金资助:
CLC Number:
SUN Xiaojun, SONG Enzhe, YAO Chong. Research Status of Key Technologies for Energy Management System of Marine Hybrid Propulsion Systems[J]. China Mechanical Engineering, 2022, 33(04): 469-481,495.
孙晓军, 宋恩哲, 姚崇. 船用混合动力推进系统能量管理系统关键技术研究现状[J]. 中国机械工程, 2022, 33(04): 469-481,495.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2022.04.010
[1]HE Y, LIAO N, LIN K. Can Chinas Industrial Sector Achieve Energy Conservation and Emission Reduction Goals Dominated by Energy Efficiency Enhancement? A Multi-objective Optimization Approach[J]. Energy Policy, 2021, 149:112108. [2]CHONTANAWAT J. Relationship between Energy Consumption, CO2 Emission and Economic Growth in ASEAN:Cointegration and Causality Model[J]. Energy Reports, 2020, 6(1):660-665. [3]DIOHA M O, EMODI N V, DIOHA E C. Pathways for Low Carbon Nigeria in 2050 by Using NECAL2050[J]. Renewable Energy Focus, 2019, 29:63-77. [4]CRIPPA M, OREGGIONI G, GUIZZARDI D, et al. Fossil CO2 and GHG Emissions of All World Countries[R]. Luxembourg:Publications Office of the European Union, 2019. [5]LEE S, YOO S, PARK H, et al. Novel Methodology for EEDI Calculation Considering Onboard Carbon Capture and Storage System[J]. International Journal of Greenhouse Gas Control, 2021, 105:103241. [6]范立云, 卢耀文, 肖朝辉, 等. 船舶并联式气电混合动力系统能量效率分析[J]. 船舶工程, 2019, 41(1):63-68. FAN Liyun, LU Yaowen, XIAO Chaohui, et al. Energy Efficiency Analysis of Marine Parallel Gas-electric Hybrid System[J]. Ship Engineering, 2019, 41(1):63-68. [7]CHALERMKIAT N, LI Tie, XIA Hongpu. Energy Efficiency of Integrated Electric Propulsion for Ships—a Review[J]. Renewable and Sustainable Energy Reviews, 2020, 134:110145. [8]周庆波, 艾钢, 赵同宾, 等. 柴-电混合动力系统应急推进模式仿真研究[J]. 船舶工程, 2011, 33(4):16-19. ZHOU Qingbo, AI Gang, ZHAO Tongbin, et al. Simulation Study on PTH Mode of Diesel-electric Hybrid Propulsion System[J]. Ship Engineering, 2011, 33(4):16-19. [9]SHIRAISHI K, MINAMI S, KOBAYASHI K, et al. Development of a Hybrid Tugboat Propulsion System[J]. MTZ Industrial, 2013, 3(2):36-43. [10]LETAFAT A, RAFIEI M, SHEIKH M, et al. Simultaneous Energy Management and Optimal Components Sizing of a Zero-emission Ferry Boat[J]. Journal of Energy Storage, 2020, 28:101215. [11]DI VAIO A, LPEZ-OJEDA A, MANRIQUE-DE-LARA-PEATE C, et al. The Measurement of Sustainable Behaviour and Satisfaction with Services in Cruise Tourism Experiences. An Empirical Analysis[J]. Research in Transportation Business & Management, 2021:100619. [12]AKYUZ E, CELIK M, AKGUN I, et al. Prediction of Human Error Probabilities in a Critical Marine Engineering Operation On-board Chemical Tanker Ship:the Case of Ship Bunkering[J]. Safety Science, 2018, 110:102-109. [13]JAYARAM V, KHAN Y M, MILLER W J, et al. Evaluating Emission Benefits of a Hybrid Tug Boat[R]. Riverside:University of California, 2010. [14]JAFARZADEH S, SCHJOLBERG I. Operational Profiles of Ships in Norwegian Waters:an Activity-based Approach to Assess the Benefits of Hybrid and Electric Propulsion[J]. Transportation Research, 2018, 65:500-523. [15]VLKER T. Hybrid Propulsion Concepts on Ships[C]∥33rd International Scientific Conference “Science in Practice”. Würzburg-Schweinfurt, 2015:11-16. [16]夏敬停, 李绍海, 赖琛. 船舶并联式油电混合动力系统设计[J]. 船舶工程, 2019, 41(5):34-39. XIA Jingting, LI Shaohai, LAI Chen. Design of Ship Diesel-electric Parallel Hybrid System[J]. Ship Engineering, 2019, 41(5):34-39. [17]刘亮清, 邱爱华, 赵同宾, 等. 柴电混合动力系统技术研究[C]∥中国国际船艇展暨高性能船学术报告会, 中国游艇设计建造技术论坛. 上海, 2015:1-7. LIU Liangqing, QIU Aihua, ZHAO Tongbin, et al. Research on Diesel-electric Hybrid Power System Technology[C]∥China International Boat Show and High Performance Boat Academic Conference. Shanghai, 2015:1-7. [18]JAYARAM V, KHAN Y M, MILLER W J, et al. Evaluating Emission Benefits of a Hybrid Tug Boat[R]. Riverside:University of California, 2010. [19]CHOI C H, YU S, HAN I S, et al. Development and Demonstration of PEM Fuel-cell-battery Hybrid System for Propulsion of Tourist Boat[J]. International Journal of Hydrogen Energy, 2016, 41(5):3591-3599. [20]GAGATSI E, ESTRUP T, HALATSIS A, et al. Exploring the Potentials of Electrical Waterborne Transport in Europe:the E-ferry Concept[J]. Transportation Research Procedia, 2016, 14:1571-1580. [21]VIVID. 展望发动机设计的未来[J]. 柴油机, 2017, 39(3):2-4. VIVID. The Future of Engine Design[J]. Diesel Engine, 2017, 39(3):2-4. [22]周兰喜, 马小勇. 船用低速LNG双燃料主机技术分析[J]. 江苏船舶, 2018, 35(1):31-34. ZHOU Lanxi, MA Xiaoyong. Technical Analysis of Marine Low Speed LNG Dual Fuel Main Engine[J]. Jiangsu Ship, 2018, 35(1):31-34. [23]闻明. 瓦锡兰为4艘混合动力拖船提供动力[J]. 船舶经济贸易, 2012(8):54. WEN Ming. Wrtsil Powers four Diesel-electric Hybrid Tugs[J]. Ship Economy & Trade, 2012(8):54. [24]肖朝辉. 多构型船舶混合动力系统能效管理研究[D]. 黑龙江:哈尔滨工程大学, 2020. XIAO Chaohui. Research on Energy Efficiency Management of Multi-configuration Ship Hybrid Power System[D]. Harbin:Harbin Engineering University, 2020. [25]赵同宾, 周晓洁, 邱爱华, 等. 新型高效的船舶柴电混合动力技术及应用[C]∥第十七届中国科协年会. 广州, 2015:309-314. ZHAO Tongbin, ZHOU Xiaojie, QIU Aihua, et al. Technology and Application of New Highly Efficient Ship Diesel-electric Hybrid System[C]∥The 17th Annual Meeting of CCSA. Guangzhou, 2015:309-314. [26]周庆波, 何斌, 邱爱华, 等. 基于定距舵桨的柴电混合港作拖轮动力系统设计[J]. 柴油机, 2017, 39(6):30-33. ZHOU Qingbo, HE Bin, QIU Aihua, et al. Design of a Diesel-electric Hybrid Harbor Tuqboat Propulsion System Based on Fixed-pitch Rudder Propellers[J]. Diesel Engine, 2017, 39(6):30-33. [27]刘张超, 谭琨, 于海洋, 等. 国内船舶柴电混合动力系统发展综述及典型应用案例[J]. 柴油机, 2019, 41(4):46-49. LIU Zhangchao, TAN Kun, YU Haiyang, et al. The Development of Domestic Diesel-electric Hybrid Marine Propulsion Systems and Typical Application Cases[J]. Diesel Engine, 2019, 41(4):46-49. [28]王志芳. 提升智能化水平助力内河船舶绿色发展[J]. 中国远洋海运, 2020(7):38-41. WANG Zhifang. Enhance the Level of Intelligence to Help Green Development of Inland Waterway Vessels[J]. Maritime China, 2020(7):38-41. [29]王思佳. 新理念激发内河航运“绿”动力[J]. 中国船检, 2020(7):50-53. WANG Sijia. New Concept to Stimulate the “Green” Power of Inland Waterway Shipping[J]. China Ship Survey, 2020(7):50-53. [30]郭涛, 汪璇, 吴韩, 等. 船舶混合动力技术发展趋势分析[J]. 造船技术, 2020(6):44-46. GUO Tao, WANG Xuan, WU Han, et al. Development Trend Analysis of Ship Hybrid Power Technology[J]. Marine Technology, 2020(6):44-46. [31]孟金柳. 国内第一艘太阳能混合动力游船首航[J]. 船舶工程, 2010, 32(3):2. MENG Jinliu. The First Domestic Solar-powered Hybrid Cruise Ship Maiden Voyage[J]. Ship Engineering, 2010, 32(3):2. [32]中船重工. 汾西重工为深海远洋科学调查船“沈括”号提供核心动力[J]. 船舶工程, 2018, 40(7):118. CSIC. Fenxi Heavy Industries Provides Core Power for the Deep-sea Ocean-going Scientific Research Vessel “Shen Kuo”[J]. Ship Engineering, 2018, 40(7):118. [33]李卿. 我国内河LNG动力船舶发展与应用分析[D]. 大连:大连海事大学, 2017. LI Qing. Development and Application Analysis of LNG Powered Vessel in Inland River[D]. Dalian:Dalian Maritime University, 2017. [34]范立云, 卢耀文, 沙浩男, 等. 船舶单轴并联式气电混合动力系统节能评价[J]. 哈尔滨工程大学学报, 2019, 40(7):1277-1283. FAN Liyun, LU Yaowen, SHA Haonan, et al. Energy Saving Evaluation of Ship Single-shaft Parallel Gas-electric Hybrid System[J]. Journal of Harbin Engineering University, 2019, 40(7):1277-1283. [35]BENLAHBIB B, BOUARROUDJ N, MEKHILEF S, et al. Experimental Investigation of Power Management and Control of a PV/wind/fuel cell/battery Hybrid Energy System Microgrid[J]. International Journal of Hydrogen Energy, 2020, 45(53):29110-29122. [36]GLYKAS A, PAPAIOANNOU G, PERISSAKIS S. Application and Cost-benefit Analysis of Solar Hybrid Power Installation on Merchant Marine Vessels[J]. Ocean, 2010, 37(7):592-602. [37]MANICKAVASAGAM K, THOTAKANAMA N K, PUTTARAJ V. Intelligent Energy Management System for Renewable Energy Driven Ship[J]. IET Electrical Systems in Transportation, 2019, 9(1):24-34. [38]YUAN Yupeng, WANG Jixiang, YAN Xinping, et al. A Review of Multi-energy Hybrid Power System for Ships[J]. Renewable and Sustainable Energy Reviews, 2020, 132:110081. [39]李幸群, 吴国东, 张力. 基于虚拟化技术的一体化船舶综合平台管理系统[J]. 舰船科学技术, 2018, 40(17):122-125. LI Xingqun, WU Guodong, ZHANG Li. The Incorporate Scheme of Ship Integrated Platform Management System Based on Virtualization Technique[J]. Ship Science and Technology, 2018, 40(17):122-125. [40]CHUA L W Y, TJAHJOWIDODO T, SEET G G L, et al. Implementation of Optimization-based Power Management for All-electric Hybrid Vessels[J]. IEEE Access, 2018, 6:74339-74354. [41]夏琦, 王奎, 韩志强, 等. 能量管理系统在混合动力船舶的应用和前景分析[J]. 中国科技论文, 2017, 12(22):2637-2640. XIA Qi, WANG Kui, HAN Zhiqiang. The Application and Prospect Analysis of Energy Management System in Hybrid Dynamic Ship[J]. China Sciencepaper, 2017, 12(22):2637-2640. [42]赵园园, 张丹, 柯小毛, 等. 混合动力工程机械关键技术分析[J]. 装备制造技术, 2014(8):254-255. ZHAO Yuanyuan, ZHANG Dan, KE Xiaomao. The Key Technologies Analysis of Hybrid Construction Machinery[J]. Equipment Manufacturing Technology, 2014(8):254-255. [43]WILHELM J, JANSSEN H, MERGEL J, et al. Energy Management for a Fuel Cell/battery Hybrid System[C]∥Germany, Emobility-electrical Power Train. Leipzig, 2010:11697259. [44]侯慧, 甘铭, 吴细秀, 等. 混合动力船舶能量管理研究综述[J]. 中国舰船研究, 2021, 16(5):216-229. HOU Hui, GAN Ming, WU Xixiu, et al. Review of Hybrid Ship Energy Management[J]. Chinese Journal of Ship Research, 2021, 16(5):216-229. [45]HAN J, CHARPENTIER J F, TANG T. An Energy Management System of a Fuel Cell/battery Hybrid Boat[J]. Energies, 2014, 7(5):2799-2820. [46]KHAN M M S, FARUQUE M O, NEWAZ A. Fuzzy Logic Based Energy Storage Management System for MVDC Power System of All Electric Ship[J]. IEEE Transactions on Energy Conversion, 2017, 32(2):798-809. [47]苏岭, 曾育平, 秦大同. 插电式混合动力汽车能量管理策略研究现状和发展趋势[J]. 重庆大学学报, 2017, 40(2):10-15. SU Ling, ZENG Yuping, QIN Datong. Current Situation and Development Trend of Plug-in Hybrid Electric Vehicles Energy Management Strategies[J]. Journal of Chongqing University, 2017, 40(2):10-15. [48]DENG Kai, PENG Hujun, DIRKES S, et al. An Adaptive PMP-based Model Predictive Energy Management Strategy for Fuel Cell Hybrid Railway Vehicles[J]. eTransportation, 2021, 7:100094. [49]GEERTSMA R D, NEGENBORN R R, VISSER K, et al. Design and Control of Hybrid Power and Propulsion Systems for Smart Ships:a Review of Developments[J]. Applied Energy, 2017, 194:30-54. [50]YUAN L, TJAHJOWIDODO T, LEE G, et al. Equivalent Consumption Minimization Strategy for Hybrid All-electric Tugboats to Optimize Fuel Savings[C]∥American Control Conference. Boston, 2016:16193796. [51]HAN J, CHARPENTIER J F, TANG T. An Energy Management System of a Fuel Cell/Battery Hybrid Boat[J]. Energies, 2014, 7(5):2799-2820. [52]SOLEYMANI M, YOOSOFI A, KANDI-D M. Sizing and Energy Management of a Medium Hybrid Electric Boat[J]. Journal of Marine Ence and Technology, 2015, 20(4):739-751. [53]DEROLLEPOT R, VINOT E. Sizing of a Combined Series-parallel Hybrid Architecture for River Ship Application Using Genetic Algorithm and Optimal Energy Management[J]. Mathematics & Computers in Simulation, 2019, 158:248-263. [54]HASELTALAB A, NEGENBORN R R, LODEWIJKS G. Multi-level Predictive Control for Energy Management of Hybrid Ships in the Presence of Uncertainty and Environmental Disturbances[J]. IFAC Papersonline, 2016, 49(3):90-95. [55]高迪驹, 潘康凯, 王天真. 混合动力船舶负载功率预测模型研究[J]. 控制工程, 2019, 26(2):362-367. GAO Diju, PAN Kangkai, WANG Tianzhen. Research on Load Power Prediction Model of Hybrid Power Ship[J]. Control Engineering of China, 2019, 26(2):362-367. [56]肖能齐, 徐翔, 周瑞平. 船舶柴电混合动力系统能量管理控制策略[J]. 哈尔滨工程大学学报, 2020, 41(1):153-160. XIAO Nengqi, XU Xiang, ZHOU Ruiping. Energy Management and Control Strategy of Ship Diesel-electric Hybrid Power System[J]. Journal of Harbin Engineering University, 2020, 41(1):153-160. [57]GAO D, WANG X, WANG T, et al. An Energy Optimization Strategy for Hybrid Power Ships under Load Uncertainty Based on Load Power Prediction and Improved NSGA-Ⅱ Algorithm[J]. Energies, 2018, 11:1699. [58]潘海邦, 薛圻蒙, 高迪驹, 等. 串联式混合动力内河船舶参数匹配及控制策略研究[J]. 船舶工程, 2018, 40(3):55-61. PAN Haibang, XUE Qimeng. GAO Diju, et al. Research on Parameter Matching and Control Strategy of Series Hybrid Inland Ship[J]. Ship Engineering, 2018, 40(3):55-61. [59]CURTISS P S, BRANDEMUEHL M J, KREIDER J F. Energy Management in Central HVAC Plants Using Neural Networks[J]. ASHRAE Transactions, 1994, 100(1):476-493. [60]LAN H, WEN S, HONG Y Y, et al. Optimal Sizing of Hybrid PV/Diesel/Battery in Ship Power System[J]. Applied Energy, 2015, 158:26-34. [61]GUO Y, KHAN M M S, FARUQUE M O, et al. Fuzzy Logic Based Energy Storage Supervision and Control Strategy for MVDC Power System of All Electric Ship[C]∥Power & Energy Society General Meeting. Boston, 2016:16464608. [62]张泽辉, 陈辉, 高海波, 等. 基于实时小波变换的燃料电池混合动力船舶能量管理策略[J]. 中国舰船研究, 2020, 15(2):127-136. ZHANG Zehui, CHEN Hui, GAO Haibo, et al. Energy Management Strategies for Fuel Cell Hybrid Ships Based on Real-time Wavelet Transform[J]. Chinese Journal of Ship Research, 2020, 15(2):127-136. [63]KALIKATZARAKIS M, GEERTSMA R D, BOONEN E J, et al. Ship Energy Management for Hybrid Propulsion and Power Supply with Shore Charging[J]. Control Engineering Practice, 2018, 76:133-154. [64]李斌. 燃料电池技术及其船舶应用现状[J]. 世界海运, 2011, 34(10):30-33. LI Bin. Current Status of Fuel Cell Technology and Its Application in Ships[J]. World Shipping, 2011, 34(10):30-33. [65]彭东恺, 朱礼斯, 韩金刚. 船舶燃料电池-蓄电池混合动力系统能量管理策略及仿真分析[J]. 系统仿真学报, 2014, 26(11):2797-2802. PENG Dongkai, ZHU Lisi, HAN Jingang. Simulation of Energy Management Strategy for Fuel Cell/Battery Hybrid Ship[J]. Journal of System Simulation, 2014, 26(11):2797-2802. [66]秦锋, 施伟锋, 张威. 能量管理策略在混合动力船舶上的应用[J]. 船电技术, 2017, 37(7):32-36. QIN Feng, SHI Weifeng, ZHANG Wei. Application of Energy Management Strategy in Hybrid Electric Ship[J]. Marine Electric & Electronic Technology, 2017, 37(7):32-36. [67]唐道贵. 基于智能控制算法的混合动力船舶能量管理策略研究[D]. 武汉:武汉理工大学, 2017. TANG Daokui. Research on the Intelligent Control Based Energy Management Strategy for Hybrid Ships[D]. Wuhan:Wuhan University of Technology, 2017. [68]ZHU L, HAN J, PENG D, et al. Fuzzy Logic Based Energy Management Strategy for a Fuel Cell/Battery/Ultra-capacitor Hybrid Ship[C]∥Sfax, International Conference on Green Energy. Sfax, 2014:107-112. [69]韩北川. 基于模糊控制的混合动力船舶能量管理策略研究[J]. 机电工程技术, 2019, 48(7):84-87. HAN Beichuan. Research on Energy Management System for Hybrid Ship Based on Fuzzy Control[J]. Mechanical & Electrical Engineering Technology, 2019, 48(7):84-87. [70]李丹. 基于DSP的太阳能游览船舶能量管理系统研发[D]. 厦门:集美大学, 2014. LI Dan. Research and Development of Energy Management System for Solar Cruise Ships Based on DSP[D]. Xiamen:Jimei University, 2014. [71]俞万能, 李丹, 郑为民. 太阳能游览船能量控制系统研发[J]. 中国造船, 2013, 54(3):177-183. YU Wanneng, LI Dan, ZHENG Weimin. Research and Development of Energy Control System for Solar Cruise Ship[J]. Shipbuilding of China, 2013, 54(3):177-183. [72]RUOLI T, XIN L, JINGANG L. A Novel Optimal Energy-management Strategy for a Maritime Hybrid Energy System Based on Large-scale Global Optimization[J]. Applied Energy, 2018, 228:254-264. [73]PARK J S, KATAGI T, YAMAMOTO S, et al. Operation Control of Photovoltaic/Diesel Hybrid Generating System Considering Fluctuation of Solar Radiation[J]. Solar Energy Materials & Solar Cells, 2001, 67(1):535-542. |
[1] | LIU Junling, FENG Ganghui, ZHANG Junjiang, YANG Kai. Fusion Research of Trajectory Tracking Energy-saving Control of Unmanned Hybrid Vehicles [J]. China Mechanical Engineering, 2024, 35(04): 678-690. |
[2] | YAN Zhengfeng, JIANG Guangzong, YAO Mingyao. Mode Transition and Gear Shifting Control Strategy for Parallel Hybrid Commercial Vehicles Based on Optimal Drive System Efficiency [J]. China Mechanical Engineering, 2024, 35(02): 354-363. |
[3] | TANG Xiangjiao, GAO Zucheng, ZENG Lingquan, ZHAO Yifan. A Double-layer Energy Management Strategy for HEVs under Urban Traffics [J]. China Mechanical Engineering, 2022, 33(16): 2008-2015. |
[4] | ZENG Fanqi, YUAN Xiaojing, WANG Xuping, ZHANG Ze, LIU Xiaofang. Energy Management Strategy Optimization Method Based on SOC Penalty Function [J]. China Mechanical Engineering, 2022, 33(07): 852-857,871. |
[5] | YANG Xiao, ZENG Lingwan, CHEN Peng, DU Yanbin, LI Bo. Complex Characteristics and Multi-dimensional Control Strategies of Heat Flow in Dry Gear Hobbing Machines [J]. China Mechanical Engineering, 2022, 33(05): 623-629. |
[6] | LI Rui, MENG Xianghui, XIE Youbai. Modeling Analysis of Key Friction Pairs in Low-speed Marine Diesel Engines and Verification of Friction Force Based on Wireless Measurement [J]. China Mechanical Engineering, 2022, 33(04): 380-387,396. |
[7] | LYU Tianyi, XIAO Shoune, ZHU Tao, ZHANG Jingke, WANG Xiaorui, LI Yuru, YANG Guangwu, YANG Bing. Optimization of Train Crash Energy Allocation Scheme with Multi-objective Evolutionary Algorithm [J]. China Mechanical Engineering, 2021, 32(18): 2262-2267. |
[8] | MO Chongxiang;XIU Caijing;LIANG Wanwu. Design of P2 Hybrid Engine Start Control [J]. China Mechanical Engineering, 2021, 32(01): 117-125. |
[9] | ZHANG Lixia, PANG Qiqi, PAN Fuquan, GE Xiaohan, LIN Binqin, HE Yichao, WEI Yintao, DU Yongchang. Suspension Control Applications of Magnetorheological Damper Magic Formula Model [J]. China Mechanical Engineering, 2020, 31(14): 1659-1665. |
[10] | LI Shun;LIU Huanlong;CHEN Guanpeng. Acceleration Power Characteristics of Battery Track Engineering Vehicles under Different Hydraulic Energy Coupling Modes [J]. China Mechanical Engineering, 2020, 31(12): 1452-1460. |
[11] | GAO Aiyun;ZHANG Fengli. Research on Energy Management Strategy of Extended-program Hybrid Cleaning Vehicles [J]. China Mechanical Engineering, 2019, 30(19): 2356-2363. |
[12] | LI Yongquan1,2;WU Pengtao1,2;ZHANG Yang1,2 ;ZHANG Lijie2,3. Dynamics Parameter Identification and Control of a Spherical 2-DOF Redundant Driven Parallel Robot System [J]. China Mechanical Engineering, 2019, 30(16): 1967-1975. |
[13] | WU Jinjun1;YAN Bingjie2;FANG Jigen1;WANG Xifeng1;XIE Zhipeng3;SHI Yang4;LI Liang2. Sub-optimal Energy Management Strategy for Plug-in Hybrid Electric Vehicles [J]. China Mechanical Engineering, 2019, 30(11): 1336-1342. |
[14] | LI Chunfu1;XI Junqiang2;LIU Chunying3. Analyses and Control of Influence Factors for Multi-plate Wet Clutches in Fast Oil Filling Processes [J]. China Mechanical Engineering, 2019, 30(05): 513-518. |
[15] | YIN Guodong, LI Guangmin, ZHU Tong, CHEN Jiansong . Study on Multi-Agent System of Energy Managements for 4WD Electric Vehicles [J]. China Mechanical Engineering, 2018, 29(15): 1765-1771. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||