China Mechanical Engineering ›› 2022, Vol. 33 ›› Issue (04): 482-495.DOI: 10.3969/j.issn.1004-132X.2022.04.011
Previous Articles Next Articles
CHEN Tian1,2;ZHANG Xingwu1,2;LIU Jinxin1,2;CHEN Xuefeng1,2;YAN Ruqiang1,2
Online:
2022-02-25
Published:
2022-03-11
陈甜1,2;张兴武1,2 ;刘金鑫1,2 ;陈雪峰1,2 ;严如强1,2
通讯作者:
张兴武(通信作者),男,1984年生,教授、博士研究生导师。研究方向为重大装备动力学分析方法理论、重大装备健康管理与智能运维、重大装备主动控制。E-mail:xwzhang@xjtu.edu.cn。
作者简介:
陈甜,女,1998年生,博士研究生。研究方向为振动与噪声主动控制、系统辨识。
基金资助:
CLC Number:
CHEN Tian, ZHANG Xingwu, LIU Jinxin, CHEN Xuefeng, YAN Ruqiang, . Research Progresses of Adaptive Spectral Shaping Active Control and Its Application in Naval Ship Fields[J]. China Mechanical Engineering, 2022, 33(04): 482-495.
陈甜, 张兴武, , 刘金鑫, , 陈雪峰, , 严如强, . 自适应频谱塑形主动控制及舰艇领域应用研究进展[J]. 中国机械工程, 2022, 33(04): 482-495.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2022.04.011
[1]朱石坚. 总师谈潜艇降噪的手段与意义[J]. 现代舰船, 2012(10):10-11. ZHU Shijian. Chief Division on Submarine Noise Reduction Means and Significance[J]. Modern Ships, 2012(10):10-11. [2]胡家雄, 伏同先. 21世纪常规潜艇声隐身技术发展动态[J]. 舰船科学技术, 2001, 23(4):2-5. HU Jiaxiong, FU Tongxian. Development of Acoustic Stealth Technology for Conventional Submarine in the 21st Century[J]. Ship Science and Technology, 2001, 23(4):2-5. [3]王勇, 鲁克明, 余广平, 等. 国外潜艇声隐身技术的现状及发展方向[J]. 舰船电子工程, 2010, 30(1):1-4. WANG Yong, LU Keming, YU Guangping, et al. A Present Situation and Development of Noise Control for Submarines Abroad[J]. Ship Electronic Engineering, 2010, 30(1):1-4. [4]ROBERTS G N, SUTTON R. Advances in Unmanned Marine Vehicles[M]. London:The Institution of Engineering and Technology, 2006. [5]郭磊, 王玲, 陈勇, 等. 一种新的水声信号LOFAR谱图去噪处理方法[J]. 数字技术与应用, 2016(4):39-42. GUO Lei, WANG Ling, CHEN Yong, et al. A New De-noising Algorithm of Underwater Acoustic Signal LOFAR Spectrum[J]. Digital Technology and Application, 2016(4):39-42. [6]何琳, 徐伟. 舰船隔振装置技术及其进展[J]. 声学学报, 2013, 38(2):128-136. HE Lin, XU Wei. Naval Vessel Machinery Mounting Technology and Its Recent Advances[J]. Acta Acustica, 2013, 38(2):128-136. [7]胡泽超, 何琳, 李彦. 隔振器分布对浮筏隔振系统隔振性能的影响[J]. 舰船科学技术, 2016, 38(11):48-52. HU Zechao, HE Lin, LI Yan. The Influence of the Isolators Distribution on Floating Raft Isolation Systems Performance[J]. Ship Science and Technology, 2016, 38(11):48-52. [8]罗晨. 让潜艇更安静:浅议各国潜艇消声瓦的发展[J]. 兵工科技, 2008(12):61-63. LUO Chen. Make Submarine Quieter—Discussion on the Development of Submarine Silencer Tile[J]. Ordnance Industry Science Technology, 2008(12):61-63. [9]张文毓. 国外消声瓦的研究与应用进展[J]. 船舶, 2010(6):1-4. ZHANG Wenyu. Overseas Research and Application of the Silence Tile[J]. Ship & Boat, 2010(6):1-4. [10]赵成, 陈大跃. 潜艇浮筏隔振系统的控制研究[J]. 中国机械工程, 2008, 19(3):253-257. ZHAO Cheng, CHEN Dayue. Control for Floating Raft Isolation System[J]. China Mechanical Engineering, 2008, 19(3):253-257. [11]KUO S M, TSAI J. Residual Noise Shaping Technique for Active Noise Control Systems[J]. The Journal of the Acoustical Society of America, 1994, 95(3):1665-1668. [12]de OLIVEIRA L P, STALLAERT B, JANSSENS K, et al. NEX-LMS:a Novel Adaptive Control Scheme for Harmonic Sound Quality Control[J]. Mechanical Systems and Signal Processing, 2010, 24(6):1727-1738. [13]KUO S M, GUPTA A, MALLU S. Development of Adaptive Algorithm for Active Sound Quality Control[J]. Journal of Sound and Vibration, 2007, 299(1):12-21. [14]KUO S M, YENDURI R K, GUPTA A. Frequency-domain Delayless Active Sound Quality Control Algorithm[J]. Journal of Sound and Vibration, 2008, 318(4/5):715-724. [15]MOSQUERA-SA'NCHEZ J A, DE OLIVEIRA L P. A Multi-harmonic Amplitude and Relative-phase Controller for Active Sound Quality Control[J]. Mechanical Systems and Signal Processing, 2014, 45(2):542-562. [16]WIDROW B. Adaptive Model Control Applied to Real-time Blood-pressure Regulation[M]∥BISHOP C M. Pattern Recognition and Machine Learning. Berlin:Springer, 1971:310-324. [17]WIDROW B, WALACH E. Adaptive Signal Processing for Adaptive Control[J]. IFAC Proceedings Volumes, 1983, 16(9):7-12. [18]BERNARD W, SAMUEL D S. Adaptive Signal Processing[M]. Englewood Cliffs:Prentice Hall, 1985. [19]WIDROW B, WALACH E. Adaptive Inverse Control[M]. Upper Saddle River:Prentice Hall Press, 1996. [20]WIDROW B, PLETT G L. Adaptive Inverse Control Based on Linear and Nonlinear Adaptive Filtering[C]∥Proceedings of International Workshop on Neural Networks for Identification, Control, Robotics and Signal/Image Processing. San Diego, 1996:30-38. [21]WIDROW B, PLETT G L. Nonlinear Adaptive Inverse Control[C]∥Proceedings of the 36th IEEE Conference on Decision and Control. San Diego, 1997:1032-1037. [22]WIDROW B, PLET G, FERREIRA E, et al. Adaptive Inverse Control Based on Nonlinear Adaptive Filtering[J]. IFAC Proceedings Volumes, 1998, 31(4):211-216. [23]PLETT G L. Efficient Linear MIMO Adaptive Inverse Control[J]. IFAC Proceedings Volumes, 2001, 34(14):89-94. [24]PLETT G L. Adaptive Inverse Control of Unmodeled Stable SISO and MIMO Linear Systems[J]. International Journal of Adaptive Control and Signal Processing, 2002, 16(4):243-272. [25]PLETT G L. Adaptive Inverse Control of Linear and Nonlinear Systems Using Dynamic Neural Networks[J]. IEEE Transactions on Neural Networks, 2003, 14(2):360-376. [26]ZHANG X, LI B, CHEN X, et al. Adaptive Implicit Inverse Control for a Class of Discrete-time Hysteretic Nonlinear Systems and Its Application[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(4):2112-2122. [27]LIU S, SU C Y, LI Z. Robust Adaptive Inverse Control of a Class of Nonlinear Systems with Prandtl-Ishlinskii Hysteresis Model[J]. IEEE Transactions on Automatic Control, 2014, 59(8):2170-2175. [28]CAI J, WEN C, SU H. Adaptive Inverse Control for Parametric Strict Feedback Systems with Unknown Failures of Hysteretic Actuators[J]. International Journal of Robust and Nonlinear Control, 2015, 25(6):824-841. [29]DENG H, LUO J, DUAN X, et al. Adaptive Inverse Control for Gripper Rotating System in Heavy-duty Manipulators with Unknown Dead Zones[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10):7952-7961. [30]ZHANG G, WANG Y, FAN Y, et al. Adaptive Inverse Control Based on Kriging Algorithm and Lyapunov Theory of Crawler Electromechanical System[J]. Complexity, 2018, 2018:1872943. [31]HE X, ZHAO Z, SU J, et al. Adaptive Inverse Control of a Vibrating Coupled Vessel-riser System with Input Backlash[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2019, 51(8):4706-4715. [32]AFTAB M S, AFTAB F. A Neuro-adaptive Inverse Speed Control Mechanism for Separately Excited DC Motor with Nonlinearities[C]∥First International Conference on Latest Trends in Electrical Engineering and Computing Technologies(INTELLECT). Karachi, 2017:17559147. [33]AFTAB M S, AFTAB F. A Study on Lyapunov Function Backpropagation Algorithm for Suitability as Neuro-adaptive Inverse Controller[C]∥IEEE 21st International Multi-Topic Conference(INMIC). Karachi, 2018:18356016. [34]SHI Jianzhong. Adaptive Inverse Controller Design Based on the Fuzzy C-Regression Model(FCRM)and Back Propagation(BP) Algorithm[J]. Information, 2019, 10(12):377. [35]CAO V K, ANH H P H, SON N N. Adaptive Inverse Multilayer Fuzzy Control for Uncertain Nonlinear System Optimizing with Differential Evolution Algorithm[J]. Applied Intelligence, 2021, 51(1):527-548. [36]CHEN J, HU Z, WANG J, et al. An Aeroengine Adaptive Inverse Control Method Based on U-Model[C]∥Proceedings of the 11th International Conference on Modelling, Identification and Control(ICMIC2019). Singapore, 2020:609-618. [37]SON N N. Level Control of Quadruple Tank System Based on Adaptive Inverse Evolutionary Neural Controller[J]. International Journal of Control, Automation and Systems, 2020, 18(9):2386-2397. [38]WANG J J. Adaptive Inverse Position Control of Switched Reluctance Motor[J]. Applied Soft Computing, 2017, 60:48-59. [39]张少如, 吴爱国, 王利军, 等. 无轴承永磁同步电机的神经网络逆控制[J]. 中国机械工程, 2008, 19(22):2681-2686. ZHANG Shaoru, WU Aiguo, WANG Liju, et al. Neural Network Inverse Control of Bearingless Permanent Magnet-type Synchronous Motors[J]. China Mechanical Engineering, 2008, 19(22):2681-2686. [40]CHEN Z, XUE Z, FANG H, et al. Permanent Magnet Synchronous Motor Speed Control System Based on Adaptive Inverse Control Method[J]. Journal of Northwestern Polytechnical University, 2019, 37(4):824-829. [41]MORGAN D. An Analysis of Multiple Correlation Cancellation Loops with a Filter in the Auxiliary Path[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1980, 28(4):454-467. [42]BURGESS J C. Active Adaptive Sound Control in a Duct:a Computer Simulation[J]. The Journal of the Acoustical Society of America, 1981, 70(3):715-726. [43]WIDROW B, STEARNS S. Adaptive Signal Processing[M]. New Jersey:Prentice-Hall, 1985. [44]LUO L, SUN J, HUANG B. A Novel Feedback Active Noise Control for Broadband Chaotic Noise and Random Noise[J]. Applied Acoustics, 2017, 116:229-237. [45]ERIKSSON L, ALLIE M, GREINER R. The Selection and Application of an IIR Adaptive Filter for Use in Active Sound Attenuation[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1987, 35(4):433-437. [46]AHMED S, TUFAIL M, REHAN M, et al. A Novel Approach for Improved Noise Reduction Performance in Feed-forward Active Noise Control Systems with(loudspeaker) Saturation Non-linearity in the Secondary Path[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2020, 29:187-197. [47]ROUT N K, DAS D P, PANDA G. Particle Swarm Optimization Based Nonlinear Active Noise Control under Saturation Nonlinearity[J]. Applied Soft Computing, 2016, 41:275-289. [48]WIDROW B, GLOVER J R, MCCOOL J M, et al. Adaptive Noise Cancelling:Principles and Applications[J]. Proceedings of the IEEE, 1975, 63(12):1692-1716. [49]MORGAN D R, SANFORD C. A Control Theory Approach to the Stability and Transient Analysis of the Filtered-x LMS Adaptive Notch Filter[J]. IEEE Transactions on Signal Processing, 1992, 40(9):2341-2346. [50]MORGAN D R, THI J. A Multitone Pseudocascade, Filtered-X LMS Adaptive Notch Filter[J]. IEEE Transactions on Signal Processing, 1993, 41(2):946-956. [51]BAGHA S, DAS D P, BEHERA S K. An Efficient Narrowband Active Noise Control System for Accommodating Frequency Mismatch[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2020, 28:2084-2094. [52]LIU L, SU Q, LI W, et al. Real Time Implementation and Experiments of Multi-channel Active Noise Control System for ICU[C]∥IEEE International Conference on Electro Information Technology(EIT). Mt. Pleasant, 2021:395-400. [53]LJ E. Ⅱ. Recursive Algorithms for Active Noise Control[J]. IEEJ Transactions on Industry Applications, 1991, 111(10):819-822. [54]ELLIOTT S J, NELSON P A. Active Noise Control[J]. IEEE Signal Processing Magazine, 1993, 10(4):12-35. [55]TAN L, DONG C, DU S. On Implementation of Adaptive Bilinear Filters for Nonlinear Active Noise Control[J]. Applied Acoustics, 2016, 106:122-128. [56]LORENTE J, FERRER M, de DIEGO M, et al. The Frequency Partitioned Block Modified Filtered-x NLMS with Orthogonal Correction Factors for Multichannel Active Noise Control[J]. Digital Signal Processing, 2015, 43: 47-58. [57]NELSON P A, HAMADA H, ELLIOTT S J. Adaptive Inverse Filters for Stereophonic Sound Reproduction[J]. IEEE Transactions on Signal Processing, 1992, 40(7):1621-1632. [58]NELSON P A, ORDUNA-BUSTAMANTE F, HAMADA H. Inverse Filter Design and Equalization Zones in Multichannel Sound Reproduction[J]. IEEE Transactions on Speech and Audio Processing, 1995, 3(3):185-192. [59]KIRKEBY O, NELSON P A. Digital Filter Design for Inversion Problems in Sound Reproduction[J]. Journal of the Audio Engineering Society, 1999, 47(7/8):583-595. [60]TATEKURA Y, YOSHIDA N. Reference Signal Extraction under a Noisy Environment for a Semi-adaptive Sound Reproduction System[J]. IEICE Electronics Express, 2010, 7(9):583-588. [61]CANCLINI A, MARKOVIC D, BIANCHI L, et al. A Robust Geometric Approach to Room Compensation for Sound Field Rendering[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2014, 97(9):1884-1892. [62]TALAGALA D S, ZHANG W, ABHAYAPALA T D. Efficient Multi-channel Adaptive Room Compensation for Spatial Soundfield Reproduction Using a Modal Decomposition[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2014, 22(10):1522-1532. [63]JIN W, KLEIJN W B. Theory and Design of Multizone Soundfield Reproduction Using Sparse Methods[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2015, 23(12):2343-2355. [64]KARSHENAS A, DUNNIGAN M, WILLIAMS B. Adaptive Inverse Control Algorithm for Shock Testing[J]. IEE Proceedings-Control Theory and Applications, 2000, 147(3):267-276. [65]DERTIMANIS V K, MOUZAKIS H P, PSYCHARIS I N. On the Acceleration-based Adaptive Inverse Control of Shaking Tables[J]. Earthquake Engineering & Structural Dynamics, 2015, 44(9):1329-1350. [66]ZHANG L, CONG D, YANG Z, et al. Attitude Synchronous Tracking Control of Double Shaking Tables Based on Hybrid Fuzzy Logic Cross-coupled Controller and Adaptive Inverse Controller[J]. Journal of Intelligent & Fuzzy Systems, 2015, 29(6):2537-2546. [67]YACHUN T, PENG P, DONGBIN Z, et al. A Two-loop Control Method for Shaking Table Tests Combining Model Reference Adaptive Control and Three-variable Control[J]. Frontiers in Built Environment, 2018, 4:54. [68]LIU J, QIAO B, ZHANG X, et al. Adaptive Vibration Control on Electrohydraulic Shaking Table System with an Expanded Frequency Range:Theory Analysis and Experimental Study[J]. Mechanical Systems and Signal Processing, 2019, 132:122-137. [69]KUO S M, JI M J. Principle and Application of Adaptive Noise Equalizer[J]. IEEE Transactions on Circuits and Systems II:Analog and Digital Signal Processing, 1994, 41(7):471-474. [70]ZHAO H, ZENG X, HE Z, et al. Adaptive RSOV Filter Using the FELMS Algorithm for Nonlinear Active Noise Control Systems[J]. Mechanical Systems and Signal Processing, 2013, 34(1/2):378-392. [71]LUO L, BAI Z, ZHU W, et al. Improved Functional Link Artificial Neural Network Filters for Nonlinear Active Noise Control[J]. Applied Acoustics, 2018, 135:111-123. [72]ZHU W, LUO L, XIE A, et al. A Novel FELMS-based Narrowband Active Noise Control System and Its Convergence Analysis[J]. Applied Acoustics, 2019, 156:229-245. [73]SHAH S, SAMAR R, RAJA M, et al. Fractional Normalised Filtered-error Least Mean Squares Algorithm for Application in Active Noise Control Systems[J]. Electronics Letters, 2014, 50(14):973-975. [74]de DIEGO M, GONZALEZ A, FERRER M, et al. Multichannel Active Noise Control System for Local Spectral Reshaping of Multifrequency Noise[J]. Journal of Sound and Vibration, 2004, 274(1/2):249-271. [75]GONZALEZ A, de DIEGO M, FERRER M, et al. Multichannel Active Noise Equalization of Interior Noise[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2005, 14(1):110-122. [76]KUO S M, MALLU S. Adaptive Active Sound Quality Control Algorithm[C]∥International Symposium on Intelligent Signal Processing and Communication Systems. Hong Kong, 2005:737-740. [77]REES L E, ELLIOTT S J. Adaptive Algorithms for Active Sound-profiling[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2006, 14(2):711-719. [78]WANG L, GAN W S. Convergence Analysis of Narrowband Active Noise Equalizer System under Imperfect Secondary Path Estimation[J]. IEEE transactions on Audio, Speech, and Language Processing, 2009, 17(4):566-571. [79]WANG L, GAN W S. Analysis of Misequalization in a Narrowband Active Noise Equalizer System[J]. Journal of Sound and Vibration, 2008, 311(3/5):1438-1446. [80]LIU J, CHEN X. Adaptive Compensation of Misequalization in Narrowband Active Noise Equalizer Systems[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2016, 24(12):2390-2399. [81]LIU J, YANG L, YANG L, et al. Multiple-harmonic Amplitude and Phase Control Method for Active Noise and Vibration Reshaping[J]. Journal of Vibration and Control, 2018, 24(14):3173-3193. [82]刘金鑫, 陈雪峰, 张兴武, 等. 结构自适应频谱塑形主动控制研究[J]. 机械工程学报, 2021, 57(8):90-97. LIU Jinxin, CHEN Xuefeng, ZHANG Xingwu, et al. Adaptive Spectral Reshaping Method of Active Control for Structures[J]. Journal of Mechanical Engineering, 2021, 57(8):90-97. [83]窦雪婷, 王岩松, 王统洲. 基于经验模态分解的车内声品质 EMD-ANE 主动控制算法[J]. 上海工程技术大学学报, 2020, 34(2):113-118. DOU Xueting, WANG Yansong, WANG Tongzhou. An EMD-ANE Active Control Algorithm Based on EMD for Vehicle Interior Sound Quality[J]. Journal of Shanghai University of Engineering Science, 2020, 34(2):113-118. [84]WANG Y, ZHANG S, GUO H, et al. Hybrid Time-frequency Algorithm for Active Sound Quality Control of Vehicle Interior Noise Based on Stationary Discrete Wavelet Transform[J]. Applied Acoustics, 2021, 171:107561. [85]LIU F, MILLS J K, DONG M, et al. Active Broadband Sound Quality Control Algorithm with Accurate Predefined Sound Pressure Level[J]. Applied Acoustics, 2017, 119:78-87. [86]张兴武, 刘金鑫, 陈雪峰, 等. 基于神经网络的薄壳多目标振动优化控制研究[J]. 机械工程学报, 2016, 52(9):56-64. ZHANG Xingwu, LIU Jinxin, CHEN Xuefeng, et al. Neural Network Based Multi-objective Active Vibration Optimization Method for Shell Structure[J]. Journal of Mechanical Engineering, 2016, 52(9):56-64. |
[1] | LIU Jie, JIAN Linjie, DOU Zecheng, WEN Guilin, WANG Ruikun, LI Fangyi. On Sound Absorption Characteristics of Lightweight Structures Constructed by UMPPs [J]. China Mechanical Engineering, 2023, 34(20): 2395-2402. |
[2] | FU Yifeng , WANG Huming, CAO Pan. Thin Shell Structure Enhanced Nanocomposite Coating for Deep-sea High Pressure Sound Absorption [J]. China Mechanical Engineering, 2022, 33(12): 1444-1451. |
[3] | ZI Bao, DING Zheyu, WU Yiwan, BAI Hongbai. High Temperature Mechanics Modeling and Experimental Research of Metal Rubber Coated Damping Structure [J]. China Mechanical Engineering, 2022, 33(11): 1294-1301. |
[4] | GAO Shengyao, GUO Peng, ZHOU Qizheng. Analysis of Low Frequency Vibration Characteristics of Locally-resonant Vibration Isolation Systems [J]. China Mechanical Engineering, 2022, 33(03): 310-317,347. |
[5] | NIU Bin, YAN Jiaming, MAO Yuming, LIU Haiyang. Collaborative Design Optimization of Damping Layers and Stiffener Layout of Thin-walled Stiffened Plate Structures for Dynamics Performances [J]. China Mechanical Engineering, 2021, 32(16): 1912-1920. |
[6] | ZHOU Zhengxue1 LI Hui1 XUE Pengcheng1 WU Huaishuai1 CHEN Shuyao2. Natural Characteristic Calculation and Verification of FRCS [J]. China Mechanical Engineering, 2018, 29(10): 1234-1239. |
[7] | AN Jun;LYU Haifeng;GENG Yanzhang;HAN Yannan. Acoustic Performance of Tunable Helmholtz Resonator [J]. China Mechanical Engineering, 2018, 29(08): 954-957,964. |
[8] | FENG Tianpei1;SUN Yuedong1;WANG Yansong2;ZHOU Ping1;GUO Hui2;LIU Ningning2. Annoyance Subjective Evaluation Method of Automotive Interior Nonstationary Noises Based on Human Auditory Masking Effect [J]. China Mechanical Engineering, 2017, 28(24): 2919-2924,2930. |
[9] | Du Yanchen, Qin Jing. Theoretical and Experimental Investigations of Particle Impact Damper with Elastic Restraints [J]. China Mechanical Engineering, 2016, 27(21): 2934-2938. |
[10] | Zhou Minggang, Dong Qifei, Liu Yang, Chen Yuan . A Calculation Method of Zwicker Time-varying Loudness [J]. China Mechanical Engineering, 2014, 25(22): 3073-3076. |
[11] | Xiao Yue, Chen Jian, Jiang Fengxin. Equivalent Acoustic Transfer Vector Method for Analysis of Sound Field in Irregular Enclosure [J]. China Mechanical Engineering, 2014, 25(21): 2853-2859. |
[12] | Li Hui, Sun Wei, Xu Kai, Han Qingkai. Damping Characteristics of Thin Cantilever Plate Structure Identified by Frequency Bandwidth Method of Base Excitation [J]. China Mechanical Engineering, 2014, 25(16): 2173-2177,2183. |
[13] | Chen Yuan, Wu Xingcheng , Zhou Minggang, Wang Yanqing, Zhu Shuai. Research on Vibration Band Gap of Three-dimensional Quaternary Phononic Crystals with Tungsten Core [J]. China Mechanical Engineering, 2014, 25(6): 813-817. |
[14] | Xiong Jiulang, Liu Jing, Xu Renbo. Vibration Characteristics of a Double-direction TiNi SMA Ring Damper [J]. China Mechanical Engineering, 2014, 25(2): 143-146. |
[15] | TAO Hao-Ping, ZHANG Jing. Analysis of Structural-acoustic Coupling of a Panel in a Rectangular Enclosure [J]. China Mechanical Engineering, 2012, 23(20): 2434-2437. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||