1.School of Mechanical & Automotive Engineering,Fujian University of Technology,Fuzhou,350118
2.The Second Affiliated Hospital of Anhui Medical University,Hefei,230032
[1]LU J, JIA Z J, LI J, et al. Electron Beam Melting Fabrication of Porous Ti6Al4V Scaffolds:Cytocompatibility and Osteogenesis[J]. Advanced Engineering Materials, 2015, 17(9):1391-1398.
[2]SHAOKI A, XU J Y, SUN H, et al. Osseointegration of Three-dimensional Designed Titanium Implants Manufactured by Selective Laser Melting[J]. Biofabrication, 2016, 8(4):045014.
[3]CHEN C, HAO Y, BAI X, et al. 3D Printed Porous Ti6Al4V Cage:Effects of Additive Angle on Surface Properties and Biocompatibility Bone Ingrowth in Beagle Tibia Model[J]. Materials & Design, 2019, 175:107824.
[4]DU Y, LIU H, YANG Q, et al. Selective Laser Sintering Scaffold with Hierarchical Architecture and Gradient Composition for Osteochondral Repair in Rabbits[J]. Biomaterials, 2017, 137:37-48.
[5]LIANG H, YANG Y, XIE D, et al. Trabecular-like Ti-6Al-4V Scaffolds for Orthopedic:Fabrication by Selective Laser Melting and in Vitro Biocompatibility[J]. Journal of Materials Science & Technology, 2019, 35(7):1284-1297.
[6]张博, 曹毅, 王玲, 等. 选区激光熔化体心立方多孔结构的各向异性[J]. 中国激光, 2017, 44(8):121-129.
ZHANG Bo, CAO Yi, WANG Ling, et al. Anisotropy of Body-centered-cubic Porous Structures by Selective Laser Melting[J]. Chinese Journal of Lasers, 2017, 44(8):121-129.
[7]吴根丽, 刘婷婷, 张长东, 等. Ti6Al4V激光选区熔化成形悬垂结构的质量研究[J]. 中国机械工程, 2016, 27(13):1810-1815.
WU Genli, LIU Tingting, ZHANG Changdong, et al. Research on Forming Quality of Overhanging Structure by Selective Laser Melting[J]. China Mechanical Engineering, 2016, 27(13):1810-1815.
[8]康建峰, 王玲, 孙畅宁, 等. 面向3D打印可变模量金属假体的微结构设计[J]. 机械工程学报, 2017, 53(5):175-180.
KANG Jianfeng, WANG Ling, SUN Changning, et al. Microstructure Design for 3D Printed Metal Prosthesis of Adjustable Modulus[J]. Journal of Mechanical Engineering, 2017, 53(5):175-180.
[9]CAPEK J, MACHOVA M, FOUSOVA M, et al. Highly Porous, Low Elastic Modulus 316L Stainless Steel Scaffold Prepared by Selective Laser Melting[J]. Materials Science & Engineering C, 2016, 69:631-639.
[10]TUCHO W M, LYSNE V H, AUSTBO H, et al. Investigation of Effects of Process Parameters on Microstructure and Hardness of SLM Manufactured SS316L[J]. Journal of Alloys and Compounds, 2018, 740:910-925.
[11]宗学文, 高倩, 周宏志, 等. 体激光能量密度对选区激光熔化316L不锈钢各向异性的影响[J]. 中国激光, 2019, 46(5):344-350.
ZONG Xuewen, GAO Qian, ZHOU Hongzhi, et al. Effects of Bulk Laser Energy Density on Anisotropy of Selective Laser Sintered 316L Stainless Steel 2019[J]. Chinese Journal of Lasers, 2019, 46(5):344-350.
[12]AHMADI A, MIRZAEIFAR R, MOGHADDAM N S, et al. Effect of Manufacturing Parameters on Mechanical Properties of 316L Stainless Steel Parts Fabricated by Selective Laser Melting:a Computational Framework[J]. Materials & Design, 2016, 112:328-338.
[13]LARIMIAN T, KANNAN M, GRZESIAK D, et al. Effect of Energy Density and Scanning Strategy on Densification, Microstructure and Mechanical Properties of 316L Stainless Steel Processed via Selective Laser Melting[J]. Materials Science & Engineering, 2020, 770:138455.
[14]DU Y, LIANG H, XIE D, et al. Design and Statistical Analysis of Irregular Porous Scaffolds for Orthopedic Reconstruction Based on Voronoi Tessellation and Fabricated via Selective Laser Melting(SLM)[J]. Materials Chemistry and Physics, 2020, 239:121968.
[15]WANG G, SHEN L, ZHAO J, et al. Design and Compressive Behavior of Controllable Irregular Porous Scaffolds:Based on Voronoi-Tessellation and for Additive Manufacturing[J]. ACS Biomaterials Science & Engineering, 2018, 4(2):719-727.
[16]GIBSON L J, ASHBY M F. Cellular Solids:Structure and Properties[M]. Cambridge:Cambridge University Press, 1997:161-179.
[17]杨晨, 董志宏, 迟长泰, 等. 选区激光熔化成形24CrNiMo合金钢的组织结构与力学性能[J]. 中国激光, 2020, 47(5):389-399.
YANG Chen, DONG Zhihong, CHI Changtai, et al. Microstructure and Mechanical Properties of 24CrNiMo Alloy Steel Formed by Selective Laser Melting[J]. Chinese Journal of Lasers, 2020, 47(5):389-399.
[18]许勤. 灰色关联分析选区激光烧结成型研究[J]. 激光与光电子学进展, 2014, 51(12):179-182.
XU Qin. Study on Process Parameters Optimization of Selective Laser Sintering with Gray Relational Analysis[J]. Laser & Optoelectronics Progress, 2014, 51(12):179-182. [19]赵丹丹, 焦锋. 基于灰色关联分析的35CrMoV钢活塞杆激光熔覆工艺参数优化[J]. 兵工学报, 2018, 39(10):2073-2080.
ZHAO Dandan, JIAO Feng. Optimization of Laser Cladding Process Parameters of 35CrMoV Piston Rod Based on Grey Correlation Analysis[J]. Acta Armamentarii, 2018, 39(10):2073-2080.
[20]刘洋, 李克钢, 李明亮, 等. 基于AHP-模糊评价的采空区稳定性研究[J]. 有色金属工程, 2020, 10(11):114-119.
LIU Yang, LI Kegang, LI Mingliang, et al. Study on the Stability of Mined-out Area Based on AHP-fuzzy Evaluation[J]. Nonferrous Metals Engineering, 2020, 10(11):114-119.