[1] SALAH E, JUNGHYUK K, MARTIN J. Micro-scale Hole Profile Measurement Using Rotating Wire Probe and Acoustic Emission Contact Detection[J].Measurement, 2016, 89:215-222. [2] MA Y Z, YU Y X, WANG X H. Diameter Measuring Technique Based on Capacitive Probe for Deep Hole or Oblique Hole Monitoring[J]. Measurement, 2014, 47:42-44. [3] MEKID S, VACHARANUKUL K. In-process Out-of-roundness Measurement Probe for Turned Workpieces[J]. Measurement, 2011, 44(4):762-766. [4] AKIO K, TAKAO S, HIROSHI M, et al. Development of a Laser-guiding-type Deep Small-sized Hole-measurement System:Measurement Accuracy[J]. Precision Engineering, 2020, 63:18-32. [5] KVHNEL M, ULLMANN V, GERHARDT U, et al. Automated Setup for Non-tactile High-precision Measurements of Roundness and Cylindricity Using Two Laser Interferometers[J]. Measurement Science&Technology, 2012, 23(7):074016. [6] 赵维谦,王龙肖,邱丽荣,等.激光聚变靶丸内表面轮廓测量系统的研制[J].光学精密工程, 2019, 27(5):1013-1023. ZHAO Weiqian,WANG Longxiao, QIU Lirong, et al. Development of Inner-surface Profile Measurement System for ICF Capsule[J]. Optics and Precision Engineering, 2019, 27(5):1013-1023. [7] ZATOČILOVÁ A, PALOUŠEK D, BRANDEJS J. Image-based Measurement of the Dimensions and of the Axis Straightness of Hot Forgings[J]. Measurement, 2016, 94:254-264. [8] RHINITHAA P T, SELVAKUMAR P, NIKHIL S, et al. Comparative Study of Roundness Evaluation Algorithms for Coordinate Measurement and Form Data[J]. Precision Engineering, 2018, 51:458-467. [9] LI X M, SHI Z Y. Application of Convex Hull in the Assessment of Roundness Error[J]. International Journal of Machine Tools&Manufacture, 2008, 48(6):711-714. [10] LI X M, LIU H Q. A Simple and Efficient Algorithm for Evaluation of Roundness Error[J]. Measurement Science&Technology, 2012, 23(8):087003. [11] LI X M, ZHANG J C. A Joint Method for the Maximum Inscribed Circle and Minimum Circumscribed Circle[J]. Measurement, 2016, 87:189-193. [12] GADELMAWLA E S. Simple and Efficient Algorithms for Roundness Evaluation from the Coordinate Measurement Data[J]. Measurement, 2010, 43(2):223-235. [13] LEI X Q, ZHANG C Y, XUE Y J, et al. Roundness Error Evaluation Algorithm Based on Polar Coordinate Transform[J]. Measurement, 2011, 44(2):345-350. [14] GOCH G, LVBKE K. Tschebyscheff Approximation for the Calculation of Maximum Inscribed/Minimum Circumscribed Geometry Elements and Form Deviations[J]. CIRP Annals:Manufacturing Technology, 2008, 57(1):517-520. [15] LI X M, SHI Z Y. The Relationship between the Minimum Zone Circle and the Maximum Inscribed Circle and the Minimum Circumscribed Circle[J]. Precision Engineering, 2009, 33(3):284-290. [16] ISO. Geometrical Product Specifications (GPS)-Geometrical Tolerancing-Tolerances of Form, Orientation, Location and Run-out:ISO 1101-2017[S].Geneva:ISO, 2017. [17] ISO. Geometrical Product Specifications (GPS)-Roundness-Part 1:Vocabulary and Parameters of Roundness:ISO 12181-1-2011[S]. Geneva:ISO, 2011. [18] ISO. Geometrical Product Specifications (GPS)-Inspection by Measurement of Workpieces and Measuring Equipment-Part 2:Guidance for the Estimation of Uncertainty in GPS Measurement, in Calibration of Measuring Equipment and in Product Verification:ISO 14253-2-2011[S].Geneva:ISO, 2011. [19] BACHMANN J, LINARES J, SPRAUEL J, et al. Aide in Decision-making:Contribution to Uncertainties in Three-dimensional Measurement[J]. Precision Engineering, 2004, 28(1):78-88. |