YIN Zengbin, ZHU Zhiyong, WANG Zixiang, YUAN Juntang. Study on Microwave Sintering Technology of Complex-shaped Ceramic Tools[J]. China Mechanical Engineering, 2022, 33(08): 899-907.
[1]OGHBAEI M, MIRZAEE O. Microwave Versus Conventional Sintering:a Review of Fundamentals, Advantages and Applications[J]. Journal of Alloys and Compounds, 2010, 494(1/2):175-189.
[2]DEMIRSKYI D, AGRAWAL D, RAGULYA A. Tough Ceramics by Microwave Sintering of Nanocrystalline Titanium Diboride Ceramics[J]. Ceramics International, 2014, 40(1):1303-1310.
[3]JANNEY M A, KIMREY H D, SCHMIDT M A, et al. Grain Growth in Microwave-annealed Alumina[J]. Journal of the American Ceramic Society, 1991, 74(7):1675-1681.
[4]YIN Z, YUAN J, CHENG Y, et al. Microstructure Evolution and Densification Kinetics of Al2O3/Ti(C, N) Ceramic Tool Material by Microwave Sintering[J]. International Journal of Refractory Metals and Hard Materials, 2016, 61:225-229.
[5]YAN S, YIN Z, YUAN J, et al. Microstructure and Properties of Submicron Grained Alumina Ceramic Tool Material Prepared by Two-step Microwave Sintering[J]. Ceramics International, 2018, 44(14):17479-17485.
[6]ZUO F, BADEV A, SAUNIER S, et al. Microwave Versus Conventional Sintering:Estimate of the Apparent Activation Energy for Densification of α-Alumina and Zinc Oxide[J]. Journal of the Euro-pean Ceramic Society, 2014, 34(12):3103-3110.
[7]RYBAKOV K I, SEMENOV V E, LINK G, et al. Preferred Orientation of Pores in Ceramics under Heating by a Linearly Polarized Microwave Field[J]. Journal of Applied Physics, 2007, 101(8):1-5.
[8]RAJ R, COLOGNA M, FRANCIS J S C. Influence of Externally Imposed and Internally Generated Electrical Fields on Grain Growth, Diffusional Creep, Sintering and Related Phenomena in Ceramics[J]. Journal of the American Ceramic Society, 2011, 94(7):1941-1965.
[9]Z·YMEKA D, SAUNIER S, GOEURIOT D, et al. Densification and Thermal Gradient Evolution of Alumina during Microwave Sintering at 2.45 GHz[J]. Ceramics International, 2013, 39(3):3269-3277.
[10]陈利祥. 结构陶瓷微波烧结/焊接腔内电磁场分布的仿真模拟研究[D]. 青岛:中国海洋大学, 2011.
CHEN Lixiang. Simulation Study on the Electromagnetic Field Distribution of Microwave Sintering/Welding Cavity for Structural Ceramics[D]. Qingdao:Ocean University of China, 2011.
[11]DINCOV D D, PARROTT K A. Computational Analysis of Microwave Heating Patterns in Resonant Multimode Cavities[C]∥ACM Symposium on Applied Computing. Nicosia, 2004:215-219.
[12]吕晶, 陈利祥, 聂贺峰, 等. 试样几何参数对微波烧结腔电场分布的影响[J]. 青岛大学学报(自然科学版), 2015, 28(3):29-34.
LYU Jing, CHEN Lixiang, NIE Hefeng, et al. Influence of Sample Geometric Parameters on Electric Field Distribution in Sintering Cavity[J]. Journal of Qingdao University(Natural Science Edition), 2015, 28(3):29-34.
[13]杜君. 基于HFSS的微波烧结腔场分布的仿真研究[D]. 昆明:昆明理工大学, 2014.
DU Jun. Simulation Study on the Electromagnetic Field Distribution of Microwave Sintering Based on HFSS[D]. Kunming:Kunming University of Science and Technology, 2014.
[14]CROQUESEL J, MEUNIER C, PETIT C, et al. Design of an Instrumented Microwave Multimode Cavity for Sintering of Nuclear Ceramics[J]. Materials&Design, 2021, 204:109638.
[15]TANG H, SHU X, HUANG W, et al. Rapid Solidification of Sr-contaminated Soil by Consecutive Microwave Sintering:Mechanism and Stability Evaluation[J]. Journal of Hazardous Materials, 2021, 407:124761.
[16]WANG X, LIU Z, TANG Y, et al. Low Temperature and Rapid Microwave Sintering of Na3Zr2Si2PO12 Solid Electrolytes for Na-ion Batteries[J]. Journal of Power Sources, 2021, 481:228924.
[17]SHAMAMI D Z, RABIEE S M, SHAKERI M. Use of Rapid Microwave Sintering Technique for the Processing of Magnesium-hydroxyapatite Composites[J]. Ceramics International, 2021, 47(9):13023-13034.
[18]LI G R, WEN H R, WANG H M, et al. Microstructural Characteristics and Mechanical Behavior of Microwave-assisted Sintered Ferromagnetic FeCoNi1.5CrCu HEAp/Al Matrix Composites[J]. Journal of Alloys and Compounds, 2021, 861:158439.
[19]LIU Y, ZHU J, DAI B. Transparent MgAl2O4 Ceramics Prepared by Microwave Sintering and Hot Isostatic Pressing[J]. Ceramics International, 2020, 46(16):25738-25740.
[20]ZHAO Z, ZHANG G, WANG S, et al. Preparation of Ultrafine Cemented Carbides with Uniform Structure and High Properties by Microwave Sintering[J]. Materials Letters, 2020, 260:126971.
[21]TANG S, LIU D, LI P, et al. Microstructure and Mechanical Properties of Functionally Gradient Cemented Carbides Fabricated by Microwave Heating Nitriding Sintering[J]. International Journal of Refractory Metals and Hard Materials, 2016, 58:137-142.
[22]EVANS A G, CHARLES E A. Fracture Toughness Determinations by Indentation[J]. Journal of the American Ceramic Society, 1976, 59:371-372.
[23]ZHU Zhiyong, YIN Zengbin, HONG Dongbo, et al. Preparation of Complex-shaped Al2O3/SiCp/SiCw Ceramic Tool by Two-step Microwave Sintering[J]. Ceramics International, 2020, 46:27362-27372.