1.Department of Mechanical Engineering,North China Electric Power University,Baoding,Hebei,071003
2.Hebei Key Laboratory of Electric Machinery Health Maintenance& Failure Prevention,Baoding,Hebei,071003
DONG Sijie, ZHANG Xinchun, WANG Yulin, LIU Nannan, CHEN Xuejin. Experimental Study of Failure Mechanism of Cylindrical Lithium-ion Batteries under Different Compression Loadings[J]. China Mechanical Engineering, 2022, 33(08): 915-920,951.
[1]周济. 智能制造——“中国制造2025”的主攻方向[J]. 中国机械工程, 2015, 26(17):2273-2284.
ZHOU Ji. Intelligent Manufacturing—Main Direction of “Made in China 2025”[J]. China Mechanical Engineering, 2015, 26(17):2273-2284.
[2]陈涛, 李宁宁, 李卓, 等. 侧面柱碰撞条件下电动汽车电池系统结构优化[J]. 中国机械工程, 2020, 31(9):1021-1030.
CHEN Tao, LI Ningning, LI Zhuo, et al. Structural Optimization of Electric Vehicle Battery Systems under Pole Side Impacts[J]. China Mechanical Engineering, 2020, 31(9):1021-1030.
[3]GREVE L, FEHRENBACH C. Mechanical Testing and Macro-mechanical Finite Element Simulation of the Deformation, Fracture, and Short Circuit Initiation of Cylindrical Lithium-ion Battery Cells[J]. Journal of Power Sources, 2012, 214:377-385.
[4]SAHRAEI E, CAMPBELL J, WIERZBICKI T. Modeling and Short Circuit Detection of 18650 Li-ion Cells under Mechanical Abuse Conditions[J]. Journal of Power Sources, 2012, 220:360-372.
[5]WIERZBICKI T, SAHRAEI E. Homogenized Mechanical Properties for the Jellyroll of Cylindrical Lithium-ion Cells[J]. Journal of Power Sources, 2013, 241:467-476.
[6]LIU B, JIA Y, LI J, et al. Safety Issues Caused by Internal Short Circuits in Lithium-ion Batteries[J]. Journal of Materials Chemistry A, 2018(43):21475-21484.
[7]XU J, LIU B, WANG X, et al. Computational Model of 18650 Lithium-ion Battery with Coupled Strain Rate and SOC Dependencies[J]. Applied Energy, 2016, 172:180-189.
[8]LI W, XIA Y, CHEN G H, et al. Comparative Study of Mechanical-electrical-thermal Responses of Pouch, Cylindrical, and Prismatic Lithium-ion Cells under Mechanical Abuse[J]. Science China Technological Sciences, 2018, 61(10):1472-1482.
[9]LI W, XIA Y, ZHU J, et al. State-of-charge Dependence of Mechanical Response of Lithium-ion Batteries:a Result of Internal Stress[J]. Journal of the Electrochemical Society, 2018, 165(7):A1537-A1546.
[10]SAHRAEI E, KAHN M, MEIER J, et al. Modelling of Cracks Developed in Lithium-ion Cells under Mechanical Loading[J]. RSC Advances, 2015(98):80369-80380.
[11]ZHU X Q, WANG H, WANG X, et al. Internal Short Circuit and Failure Mechanisms of Lithium-ion Pouch Cells under Mechanical Indentation Abuse Conditions:an Experimental Study[J]. Journal of Power Sources, 2020, 455:227939.
[12]ZHU J, ZHANG X W, SAHRAEI E, et al. Deformation and Failure Mechanisms of 18650 Battery Cells under Axial Compression[J]. Journal of Power Sources, 2016, 336:332-340.
[13]WANG H, KUMAR A, SIMUNOVIC S, et al. Progressive Mechanical Indentation of Large-format Li-ion Cells[J]. Journal of Power Sources, 2017, 341:156-164.
[14]ZHANG X, WIERZBICKI T. Characterization of Plasticity and Fracture of Shell Casing of Lithium-ion Cylindrical Battery[J]. Journal of Power Sources, 2015, 280:47-56.
[15]ZHANG X, SAHRAEI E, WANG K. Deformation and Failure Characteristics of Four Types of Lithium-ion Battery Separators[J]. Journal of Power Sources, 2016, 327:693-701.
[16]FENG X, OUYANG M, LIU X, et al. Thermal Runaway Mechanism of Lithium-ion Battery for Electric Vehicles:a Review[J]. Energy Storage Materials, 2018, 10:246-267.
[17]ZHU J, ZHANG X, LUO H, et al. Investigation of the Deformation Mechanisms of Lithium-ion Battery Components Using In-situ Micro Tests[J]. Applied Energy, 2018, 224:251-266.