China Mechanical Engineering ›› 2022, Vol. 33 ›› Issue (08): 943-951.DOI: 10.3969/j.issn.1004-132X.2022.08.008
Previous Articles Next Articles
LI Guochao1;BAI Xiaoxiang1;WANG Liming2;LI Changming3;LI Yousheng4
Online:
2022-04-25
Published:
2022-05-19
李国超1;柏小祥1;王黎明2;李昌明3;李友生4
作者简介:
李国超,男,1988年生,副教授。研究方向为高性能加工及数控刀具。出版专著2部,发表论文20余篇。获省部级奖励3项,获授权发明专利10余项。E-mail:liguochao@just.edu.cn。
基金资助:
CLC Number:
LI Guochao, BAI Xiaoxiang, WANG Liming, LI Changming, LI Yousheng. Key Technologies and Development Trends of Multi-axis Tool Grinding Software[J]. China Mechanical Engineering, 2022, 33(08): 943-951.
李国超, 柏小祥, 王黎明, 李昌明, 李友生. 多轴联动工具磨削软件关键技术与发展趋势[J]. 中国机械工程, 2022, 33(08): 943-951.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2022.08.008
[1]张洪军, 李建广, 张天微. 国内外数控工具磨削软件的发展状况[J]. 制造技术与机床, 2013(8):52-56. ZHANG Hongjun, LI Jianguang, ZHANG Tianwei. The Development Status of CNC Tool Grinding Software at Home and Abroad[J]. Manufacturing Technology & Machine Tool, 2013(8):52-56. [2]刘献礼, 计伟, 范梦超, 等. 基于特征的刀具“形-性-用”一体化设计方法[J]. 机械工程学报, 2016, 52(11):146-153. LIU Xianli, JI Wei, FAN Mengchao, et al. A feature-based Integrated Design Method of "Shape Property Use" for Cutting Tools[J]. Journal of Mechanical Engineering, 2016, 52(11):146-153. [3]刘战强. 先进刀具设计技术:刀具结构、刀具材料与涂层技术[J]. 航空制造技术, 2006(7):38-42. LIU Zhanqiang. Advanced Tool Design Technology:Tool Structure, Tool Material and Coating Techno-logy[J]. Aeronautical Manufacturing Technology, 2006(7):38-42. [4]陈明, 安庆龙, 刘志强. 高速切削技术基础与应用[M]. 上海:上海科学技术出版社, 2012. CHEN Ming, AN Qinglong, LIU Zhiqiang. Basis and Application of High Speed Cutting Technology[M]. Shanghai:Shanghai Science and Technology Press, 2012. [5]SCHULZ H, ABELE E. 高速加工理论与应用[M]. 北京:科学出版社, 2010. SCHULZ H, ABELE E. Theory and Application of High Speed Machining[M]. Beijing:Science Press, 2010. [6]SHETH D S, MAIKIN S. CAD/CAM for Geometry and Process Analysis of Helical Groove Machining[J]. CIRP Annals, 1990, 39(1):129-132. [7]ZHANG Wei, LI Zi, XIONG De, et al. Machining Movement Based Analytical Modelling of Twist Drill and Its Application[J]. CIRP Journal of Manufacturing Science and Technology, 2013, 6(1):13-21. [8]LI Guochao. A New Algorithm to Solve the Grinding Wheel Profile for End Mill Groove Machining[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(1/4):775-784. [9]UHLMANN E, SCHROER N, MUTHULINGAM A, et al. Increasing the Productivity and Quality of Flute Grinding Processes through the Use of Layered Grinding Wheels[J]. Procedia Manufacturing, 2019, 33:754-761. [10]LI Guochao, SUN Jie, LI Jianfeng. Modeling and Analysis of Helical Groove Grinding in End Mill Machining[J]. Journal of Materials Processing Technology, 2014, 214(12):3067-3076. [11]梁志强, 郭海新, 张素燕, 等. 微细钻头螺旋槽刃磨试验研究[J]. 机械工程学报, 2019, 55(13):185-194. LIANG Zhiqiang, GUO Haixin, ZHANG Suyan, et al. Experimental Study on Grinding Spiral Groove of Micro Drill Bit[J]. Journal of Mechanical Engineering, 2019, 55(13):185-194. [12]KARPUSCHEWSKI B, JANDECKA K, MOUREK D. Automatic Search for Wheel Position in Flute Grinding of Cutting Tools[J]. CIRP Annals, 2011, 60(1):347-350. [13]REN Lei, WANG Shilong, YI Lili, et al. An Accurate Method for Five-axis Flute Grinding in Cylindrical End-mills Using Standard 1V1/1A1 Grinding Wheels[J]. Precision Engineering, 2016, 43:387-394. [14]LI Guochao, ZHOU Honggen, JING Xuwen, et al. An Intelligent Wheel Position Searching Algorithm for Cutting Tool Grooves with Diverse Machining Precision Requirements[J]. International Journal of Machine Tools and Manufacture, 2017, 122:149-160. [15]李国超, 周宏根, 景旭文, 等. 基于小生境粒子群算法的刀具容屑槽刃磨工艺设计[J]. 计算机集成制造系统, 2019, 25(7):1746-1756. LI Guochao, ZHOU Honggen, JING Xuwen, et al. Integral Tool Groove Machining Process Design Based on Niche Particle Swarm Optimization[J]. Computer Integrated Manufacturing Systems, 2019, 25(7):1746-1756. [16]WASIF M, IQBALI S A, AHMED A, et al. Optimization of Simplified Grinding Wheel Geometry for the Accurate Generation of End-mill Cutters Using the Five-axis CNC Grinding Process[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(10):4325-4344. [17]何坤, 李国龙, 蒋林, 等. 基于数字法的成形砂轮廓形计算及包络面仿真[J]. 机械工程学报, 2018, 54(1):205-213. HE Kun, LI Guolong, JIANG Lin, et al. Profile Calculation and Envelope Simulation of Forming Wheel Based on Digital Method[J]. Journal of Mechanical Engineering, 2018, 54(1):205-213. [18]陈芳. 球面砂轮数控磨削复杂形状刀具的研究[D]. 武汉:华中科技大学, 2009. CHEN Fang. Research on CNC Grinding of Complex Shaped Cutting Tools with Spherical Grinding Wheel[D]. Wuhan:Huazhong University of Science and Technology, 2009. [19]赵文昌. 特种螺旋面刀具磨削成形技术研究[D]. 厦门:厦门大学, 2014. ZHAO Wenchang. Research on Grinding Forming Technology of Special Spiral Cutter[D]. Xiamen:Xiamen University, 2014. [20]LIU Xianli, CHEN Zhan, JI Wei, et al. Iteration-based Error Compensation for a Worn Grinding Wheel in Solid Cutting Tool Flute Grinding[J]. Procedia Manufacturing, 2019, 34:161-167. [21]LI Guochao, DAI Lei, LIU Jiao, et al. An Approach to Calculate Grinding Wheel Path for Complex End Mill Groove Grinding Based on an Optimization Algorithm[J]. Journal of Manufacturing Processes, 2020, 53:99-109. [22]UHLMANN E, HUBERT C. Tool Grinding of End Mill Cutting Tools Made from High Perfor-mance Ceramics and Cemented Carbides[J]. CIRP Annals, 2011, 60(1):359-362. [23]UHLMANN E, SCHROER H. Advances in Tool Grinding and Development of End Mills for Machining of Fibre Reinforced Plastics[J]. Procedia CIRP, 2015, 35:38-44. [24]宋铁军, 周志雄, 李伟, 等. 硬质合金刀具螺旋槽缓进给磨削力研究[J]. 中国机械工程, 2014, 25(9):1153-1158. SONG Tiejun, ZHOU Zhixiong, LI Wei, et al. Research on Creep Feed Grinding Force of Carbide Tool Spiral Groove[J]. China Mechanical Engineering, 2014, 25(9):1153-1158. [25]宋铁军, 周志雄, 李伟, 等. 硬质合金立铣刀螺旋槽磨削表面粗糙度模型研究[J]. 机械工程学报, 2017, 53(17):185-192. SONG Tiejun, ZHOU Zhixiong, LI Wei, et al. Research on Surface Roughness Model of Carbide End Mill with Spiral Groove Grinding[J]. Journal of Mechanical Engineering, 2017, 53(17):185-192. [26]PAYREBRUNE K, KROGER M. Dynamic Aspects of Modeling Long Cantilever Workpiece in Tool Grinding[J]. Journal of Sound and Vibration, 2015, 355:407-417. [27]PAYREBRUNE K, KROGER M. Reduced Models of Grinding Wheel Topography and Material Removal to Simulate Dynamical Aspects in Grinding[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(1/4):33-43. [28]PAYREBRUNE K, KROGER M. Effects of the Grinding Wheel Eccentricity and Waviness on the Dynamics of Tool Grinding[J]. Applied Mechanics and Materials, 2017, 869:128-138. [29]BUREK J, SAATA M, BAZAN A. Influence of Grinding Parameters, on the Surface Quality in the Process of Single-pass Grinding of Flute in Solid Carbide End Mill[J]. Mechanik, 2018, 91(10):808-810. [30]ASLAN D, BUDAK E. Surface Roughness and Thermo-mechanical Force Modeling for Grinding Operations with Regular and Circumferentially Grooved Wheels[J]. Journal of Materials Processing Technology, 2015, 223:75-90. [31]PAYREBRUNE K, KROGER M. An Integrated Model of Tool Grinding:Challenges, Chances and Limits of Predicting Process Dynamics[J]. Production Engineering, 2016, 10(4/5):421-432. [32]DITTRICH M, B V, WICHMANN M, et al. Simulation-based Compensation of Deflection Errors in Helical Flute Grinding[J]. CIRP Journal of Manufacturing Science and Technology, 2020, 28:136-143. [33]LIN W S, WANG Y C, HSIAO W C, et al. Grinding Performance Analysis of Diamond Wheel for Groove Grinding[C]∥IEEE International Conference on Control and Automation(ICCA). Xiamen, 2010:11446441. [34]DENKENA B, KOHLER J, MEER M. A Roughness Model for the Machining of Biomedical Ceramics by Toric Grinding Pins[J]. CIRP Journal of Manufacturing Science and Technology, 2013, 6(1):22-33. [35]黎文娟, 倪高明, 王强, 等. 整体硬质合金螺旋立铣刀磨槽工艺优化[J]. 工具技术, 2018, 52(7):98-101. LI Wenjuan, NI Gaoming, WANG Qiang, et al. Optimization of Groove Grinding Process for Solid Carbide Spiral End Mill[J]. Tool Technology, 2018, 52(7):98-101. [36]贾康, 洪军, 张银行. 一种拉刀螺旋容屑槽前刀面磨削砂轮安装位姿计算方法[J]. 机械工程学报, 2019, 55(11):205-214. JIA Kang, HONG Jun, ZHANG Yinhang. A Calculation Method of Grinding Wheel Installation Posture for Broach Spiral Chip Groove Rake Face Grinding[J]. Journal of Mechanical Engineering, 2019, 55(11):205-214. [37]WANG Y, CHEN C, LEE B. Analysis Model of Parameters Affecting Cutting Performance in High-speed Machining[J]. The International Journal of Advanced Manufacturing Technology, 2014, 72(1/4):521-530. [38]ZHAO Xiuxu, KE Wei, ZHANG Shuanshuan, et al. Potential Failure Cause Analysis of Tungsten Carbide End Mills for Titanium Alloy Machining[J]. Engineering Failure Analysis, 2016, 66:321-327. [39]何荣跃, 宋安邦, 文立东, 等. 磨削工艺对刀具刃口质量及寿命的影响[J]. 工具技术, 2018, 52(1):63-65. HE Rongye, SONG Anbang, WEN Lidong, et al. Influence of Grinding Process on Quality and Life of Tool Edge[J]. Tool Technology, 2018, 52(1):63-65. [40]CHEN J, LI B, CHEN C. Planning and Analysis of Grinding Processes for End Mills of Cemented Tungsten Carbide[J]. Journal of Materials Processing Technology, 2007, 201(1/3):618-622. [41]叶军红. 复杂刀具磨削工艺数据库系统的研究与开发[D]. 武汉:华中科技大学, 2012. YE Junhong. Research and Development of Database System for Complex Tool Grinding Process[D]. Wuhan:Huazhong University of Science and Technology, 2012. [42]随卡卡. 整体硬质合金刀具关键工步磨削工艺实验研究[D]. 长沙:湖南大学, 2014. SUI Kaka. Experimental Study on the Key Step Grinding Process of Solid Carbide Tool[D]. Chang-sha:Hunan University, 2014. [43]刘玉帮. 硬质合金刀具开槽砂轮修整工艺及磨削性能的研究[D]. 厦门:华侨大学, 2016. LIU Yubang. Research on Dressing Process and Grinding Performance of Slotted Carbide Tool Grinding Wheel[D]. Xiamen:Huaqiao University, 2016. [44]ZHANG Suyan, WANG Xibin, LIANG Zhiqiang, et al. Modeling and Optimization of the Flute Profile of Micro-drill[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(5/8):1-14. [45]陈康. 整体硬质合金立铣刀磨削工艺及砂轮补偿研究[D]. 长沙:湖南大学, 2017. CHEN Kang. Research on Grinding Technology and Grinding Wheel Compensation of Integral Carbide End Milling Cutter[D]. Changsha:Hunan University. 2017. [46]DENKENA B, DITTRICH M, LIU Y W, et al. Automatic Regeneration of Cemented Carbide Tools for a Resource Efficient Tool Production[J]. Procedia Manufacturing, 2018, 21:259-265. [47]DENKENA B, DITTRICH M, B V, et al. Self-optimizing Process Planning for Helical Flute Grinding[J]. Production Engineering, 2019, 13(5):599-606. |
[1] | WANG Dong, CHEN Lei, ZHANG Zhipeng. Study on Force Model and Surface Integrity of Cylindrical Grinding 18CrNiMo7-6 Steels [J]. China Mechanical Engineering, 2024, 35(03): 381-393. |
[2] | KANG Renke, LU Bingwei, CHEN Kailiang, LI Shengchao, DAI Jingbin, DONG Zhigang, BAO Yan. Study on Tearing of CFRP Thin Circular Tubes Machined by Ultrasonic Vibration Assisted Grinding [J]. China Mechanical Engineering, 2024, 35(03): 524-533,540. |
[3] | WANG Ming, DONG Hai, WANG Baihe, WANG Zheng, WANG Jiawei. Experimental Research of Floating Grinding Processes for 2.5D Cf/SiC Brake Materials [J]. China Mechanical Engineering, 2023, 34(20): 2434-2441. |
[4] | GAO Guofu, WANG Deyu, PAN Xianrong, QIAO Huai, FU Zongxia, XIANG Daohui, ZHAO Bo. Study on Grinding Force Model of Longitudinal Ultrasonic Assisted Helical Grinding Ti3Al Microholes [J]. China Mechanical Engineering, 2023, 34(11): 1280-1286. |
[5] | LU Yanjun, GUAN Weifeng, SUN Jiajing, MO Rui, WU Xiaoyu. Dry Mirror Grinding Technology of Coarse Diamond Grinding Wheel Based on Electrical Discharge Dressing [J]. China Mechanical Engineering, 2023, 34(09): 1052-1060. |
[6] | . Thermo-mechanics Coupling Model and Experimental Research of Longitudinal Torsional Ultrasonic Grinding of TC4 Titanium Alloys [J]. China Mechanical Engineering, 2023, 34(01): 65-74. |
[7] | XIE Zhaolong, XU Liming, WANG Kunzi, ZHOU Chao, ZHAO Da. Study on Influences of Reciprocating Speed Planning on Curve Grinding Processes [J]. China Mechanical Engineering, 2022, 33(24): 2908-2916. |
[8] | CHI Jianying, YU Aibing, WU Maochao, YUAN Jiandong, CHEN Qiujie, SUN Lei. Design of Dimensional Parameters of Chip Breaker Groove for PCD Cutting Tools [J]. China Mechanical Engineering, 2022, 33(03): 299-309. |
[9] | LUO Huan, ZHANG Dinghua, LUO Ming. Tool Wear and Remaining Useful Life Estimation of Difficult-to-machine Aerospace Alloys:a Review [J]. China Mechanical Engineering, 2021, 32(22): 2647-2666. |
[10] | CAO Tongkun, XU Yingtao, TAN Qingyao. Cutting Performance and Lubrication Mechanism of Cutting 45 Steel with Tool Continuously Lubricated at the Tool-chip Interface [J]. China Mechanical Engineering, 2021, 32(20): 2411-2417,. |
[11] | ZOU Lei;WEN Donghui;ZHANG Lihui;CHEN Zhenzhen;XIAO Yuting;LIANG Jun. Computational Model and Experimental Study for Bone Tissue Grinding Forces [J]. China Mechanical Engineering, 2020, 31(24): 3016-3023. |
[12] | YUE Caixu;LIU Xin;LIU Zhibo;XIE Na;WANG Yanwu. Tool Optimization for Splicing Die Milling Processes Based on Finite Element Simulation [J]. China Mechanical Engineering, 2020, 31(17): 2085-2094. |
[13] | ZHANG Gaofeng;GONG Junming;LI Jingtao;XIE Guoguang;SUN Hao. Grinding Experimental Study of Topography-reconstructing Grinding Wheels [J]. China Mechanical Engineering, 2020, 31(12): 1420-1424,1436. |
[14] | ZHU Wenbo1;LI Kangshun1;ZHU Huanhuan2;CHI Yulun1. Grinding Force Model and Experimental Study of Tapered Roller Ball Base Surfaces [J]. China Mechanical Engineering, 2020, 31(06): 679-687. |
[15] | ZHANG Lifeng;WANG Sheng;LI Zhan;ZHANG Jin;ZHEN Tingting;WANG Ying. Effects of Fiber Direction on Grinding Performances for Unidirectional C/SiC Composites [J]. China Mechanical Engineering, 2020, 31(03): 373-377. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||