[1]CONG Baoqiang, SU Yong, QI Bojin, et al. Wire+Arc Additive Manufacturing for Aluminum Alloy Deposits[J]. Aerospace Manufacturing Technology, 2016 (3):29-32.
[2]LOPEZ A, BACELAR R, PIRES I, et al. Non-destructive Testing Application of Radiography and Ultrasound for Wire and Arc Additive Manufacturing[J]. Additive Manufacturing, 2018, 21: 298-306.
[3]CHABOT A, LAROCHE N, CARCREFF E, et al. Towards Defect Monitoring for Metallic Additive Manufacturing Components Using Phased Array Ultrasonic Testing[J]. Journal of Intelligent Manufacturing, 2020, 31(5): 1191-1201.
[4]方学伟,白浩,姚云飞,等.冷金属过渡电弧增材制造多道搭接工艺研究[J].机械工程学报,2020,56(1):141-147.
FANG Xuewei, BAI Hao, YAO Yunfei, et al. Research on Multi-bead Overlapping Process of Wire and Arc Additive Manufacturing Based on Cold Metal Transfer[J]. Chinese Journal of Mechanical Engineering,2020,56(1):141-147.
[5]闫文韬,钱亚,林峰. 选区熔化过程多尺度多物理场建模研究进展[J]. 航空制造技术, 2017(10): 50-58.
YAN Wentao, QIAN Ya, LIN Feng. Research Progress on Multi-scale and Multi-physics Modeling of Selected Area Melting Process[J]. Aviation Manufacturing Technology, 2017(10): 50-58.
[6]SCRUBY C B, DRAIN E L. Laser Ultrasonics: Techniques and Applications[M]. Routledge:CRC Press, 1990.
[7]陈清明,蔡虎,程祖海. 激光超声技术及其在无损检测中的应用[J]. 激光与光电子学进展,2005(4): 53-57.
CHEN Qingming, CAI Hu, CHENG Zuhai. Laser Ultrasonic Technology and Its Application in Non-destructive Testing[J]. Laser and Optoelectronics Progress, 2005(4): 53-57.
[8]YASHIRO S, TAKATSUBO J, MIYAUCHI H, et al. A Novel Technique for Visualizing Ultrasonic Waves in General Solid Media by Pulsed Laser Scan[J]. NDT & E International, 2008, 41(2): 137-144.
[9]TANAKA T, IZAWA Y. Nondestructive Detection of Small Internal Defects in Carbon Steel by Laser Ultrasonics[J]. Japanese Journal of Applied Physics, 2001, 40(3A): 1477-1481.
[10]DAVIS G, NAGARAJAH R, PALANISAMY S, et al. Laser Ultrasonic Inspection of Additive Manufactured Components[J]. International Journal of Advanced Manufacturing Technology, 2019, 102(5): 2571-2579.
[11]EVERTON S K, DICKENS P, TUCK C, et al. Identification of Sub-surface Defects in Parts Produced by Additive Manufacturing, Using Generated Ultrasound[J]. Neth. J. Med., 2019, 60(11): 418.
[12]张进朋,秦训鹏,袁久鑫,等. 基于激光超声衍射体波的缺陷定位定量检测[J]. 光学学报, 2020, 40(12): 133-142.
ZHANG Jinpeng, QIN Xunpeng, YUAN Jiuxin, et al. Defect Location and Size Detection Based on Laser Ultrasonic Diffraction Bulk Wave[J]. Acta Optica Sinica, 2020, 40(12): 133-142.
[13]何翔,李亮玉,王天琪,等. 基于磁光成像的低碳钢WAAM成形件表面缺陷检测与分类[J]. 仪器仪表学报, 2020, 41(4): 255-262.
HE Xiang, LI Liangyu, WANG Tianqi, et al. Surface Defects Detection and Classification of Low Carbon Steel WAAM Formed Parts Based on Magneto-optical Imaging[J]. Chinese Journal of Scientific Instrument, 2020, 41(4): 255-262.[14]张元良,张洪潮,赵嘉旭,等. 高端机械装备再制造无损检测综述[J]. 机械工程学报,2013, 49(7): 80-90.
ZHANG Yuanliang, ZHANG Hongchao, ZHAO Jiaxu, et al. Review of Non-destructive Testing for Remanufacturing of High-end Equipment[J]. Chinese Journal of Mechanical Engineering, 2013, 49(7): 80-90.
[15]WANG Yi, XU Guanghua, LIANG Lin, et al. Detection of Weak Transient Signals Based on Wave-let Packet Transform and Manifold Learning for Rolling Element Bearing Fault Diagnosis[J]. Mechanical Systems & Signal Processing, 2015, 54: 259-276.
|