Investigation of Fluid Filled Behaviour of Cracks under Rolling Contacts
DONG Longlong1;YU Shurong1;LI Shuxin2;SONG Wei1
1.School of Petrochemical Engineering,Lanzhou University of Technology,Lanzhou,730050
2.School of Mechanical Engineering and Mechanics,Ningbo University,Ningbo,Zhejiang,315211
DONG Longlong, YU Shurong, LI Shuxin, SONG Wei. Investigation of Fluid Filled Behaviour of Cracks under Rolling Contacts[J]. China Mechanical Engineering, 2022, 33(10): 1210-1218.
[1]赵相吉, 师陆冰, 王文健, 等. 硌伤形貌对车轮材料滚动接触疲劳特性的影响[J]. 中国机械工程, 2019, 30(3):278-283.
ZHAO Xiangji, SHI Lubing, WANG Wenjian, et al. Effects of Defect Morphologies on Rolling Contact Fatigue Characteristics of Wheel Materials[J]. China Mechanical Engineering, 2019, 30(3):278-283.
[2]杨阳, 沈健, 王孔明, 等. 弹性车轮作用下低地板有轨电车轮轨磨耗研究[J]. 中国机械工程, 2021, 32(4):439-445.
YANG Yang, SHEN Jian, WANG Kongming, et al. Research on Low Floor Tram Wheel and Rail Wear under Resilient Wheels[J]. China Mechanical Engineering, 2021, 32(4):439-445.
[3]AL-MAYALI M F, HUTT S, SHARIF K J, et al. Experimental and Numerical Study of Micropitting Initiation in Real Rough Surfaces in a Micro-Elastohydrodynamic Lubrication Regime[J]. Tribology Letters, 2018, 66(4):150.
[4]MAYA-JOHNSON S, FELIPE SANTA J, TORO A. Dry and Lubricated Wear of Rail Steel under Rolling Contact Fatigue-wear Mechanisms and Crack Growth[J]. Wear, 2017, 380/381:240-250.
[5]BOWER A F. The Influence of Crack Face Friction and Trapped Fluid on Surface Initiated Rolling Contact Fatigue Cracks[J]. Journal of Tribology, 1988, 110(4):704-711.
[6]KUDISH I I, BURRIS K W. Modeling of Surface and Subsurface Crack Behavior under Contact Load in the Presence of Lubricant[J]. International Journal of Fracture, 2004, 125(1):125-147.
[7]FLETCHER D I, BEYNON J H. The Effect of Contact Load Reduction on the Fatigue Life of Pearlitic Rail Steel in Lubricated Rolling-sliding Contact[J]. Fracture of Engineering Materials & Structures, 2000, 23(8):639-650.
[8]FLETCHER D I, HYDE P, KAPOOR A. Investigating Fluid Penetration of Rolling Contact Fatigue Cracks in Rails Using a Newly Developed Full-scale Test Facility[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2007, 221(1):35-44.
[9]BOGDAN′SKI S, LEWICKI P. 3D Model of Liquid Entrapment Mechanism for Rolling Contact Fatigue Cracks in Rails[J]. Wear, 2008, 265(9/10):1356-1362.
[10]BALCOMBE R, FOWELL M T, OLVER A V, et al. A Coupled Approach for Rolling Contact Fatigue Cracks in the Hydrodynamic Lubrication Regime:the Importance of Fluid/Solid Interactions[J]. Wear, 2011, 271(5/6):720-733.
[11]DALLAGO M, BENEDETTI M, ANCELLOTTI S, et al. The Role of Lubricating Fluid Pressurization and Entrapment on the Path of Inclined Edge Cracks Originated under Rolling-sliding Contact Fatigue:Numerical Analyses vs. Experimental Evidences[J]. International Journal of Fatigue, 2016, 92:517-530.
[12]ANCELLOTTI S, FONTANARI V, DALLAGO M, et al. A Novel Experimental Procedure to Reproduce the Load History at the Crack Tip Produced by Lubricated Rolling Sliding Contact Fatigue[J]. Engineering Fracture Mechanics, 2018, 192:129-147.
[13]MAKINO T, KATO T, HIRAKAWA K. The Effect of Slip Ratio on the Rolling Contact Fatigue Property of Railway Wheel Steel[J]. International Journal of Fatigue, 2012, 36(1):68-79.
[14]ANCELLOTTI S, BENEDETTI M, DALLAGO M, et al. The Role of the Second Body on the Pressurization and Entrapment of Oil in Cracks Produced under Lubricated Rolling-sliding Contact Fatigue[J]. Theoretical and Applied Fracture Mechanics, 2017, 91:3-16.
[15]HE H, LIU H, ZHU C, et al. Numerical Study on Fatigue Crack Propagation Behaviors in Lubricated Rolling Contact[J]. Chinese Journal of Aeronautics, 2021, 34(9):24-36.
[16]HE H, LIU H, ZHU C, et al. Study of Rolling Contact Fatigue Behavior of a Wind Turbine Gear Based on Damage-coupled Elastic-plastic Model[J]. International Journal of Mechanical Sciences, 2018, 141:512-519.
[17]SU Y S, LI S X, YU F, et al. Revealing the Shear Band Origin of White Etching Area in Rolling Contact Fatigue of Bearing Steel[J]. International Journal of Fatigue, 2021, 142:105929.
[18]FONTANARI V, BENEDETTI M, STRAFFELINI G, et al. Tribological Behavior of the Bronze-steel Pair for Worm Gearing[J]. Wear, 2013, 302(1/2):1520-1527.
[19]FONTANARI V, BENEDETTI M, GIRARDI C, et al. Investigation of the Lubricated Wear Behavior of Ductile Cast Iron and Quenched and Tempered Alloy Steel for Possible Use in Worm Gearing[J]. Wear, 2016, 350/351:68-73.
[20]KANETA M, SUETSUGU M, MURAKAMI Y. Mechanism of Surface Crack Growth in Lubricated Rolling/Sliding Spherical Contact[J]. Journal of Applied Mechanics, 1986, 53(2):354-360.
[21]KANETA M, MURAKAMI Y. Propagation of Semi-elliptical Surface Cracks in Lubricated Rolling/Sliding Elliptical Contacts[J]. Journal of Tribology, 1991, 113(2):270-275.
[22]DAI P, LI Z. A Plasticity-corrected Stress Intensity Factor for Fatigue Crack Growth in Ductile Materials[J]. Acta Materialia, 2013, 61(16):5988-5995.
[23]祁爽, 蔡力勋, 包陈, 等. 30Cr2Ni4MoV转子钢Ⅱ型裂纹的疲劳扩展行为[J]. 机械工程学报, 2020, 56(20):88-97.
QI Shuang, CAI Lixun, BAO Chen, et al. Fatigue Propagation Behavior of Mode Ⅱ Crack of 30Cr2Ni4MoV Rotor Steel[J]. Journal of Mechanical Engineering, 2020, 56(20):88-97.
[24]刘园. 液体对轮轨滚动接触疲劳作用下的钢轨表面裂纹扩展机理的影响[J]. 上海海事大学学报, 2011, 32(1):65-69.
LIU Yuan. Effect of Liquid Penetration on Rail Crack Propagation Mechanism under Rolling Contact Fatigue between Wheel and Rail[J]. Journal of Shanghai Maritime University, 2011, 32(1):65-69.
[25]王步康, 董光能, 谢友柏. 润滑材料特性对接触疲劳裂纹的影响[J]. 润滑与密封, 2002(6):4-5.
WANG Bukang, DONG Guangneng, XIE Youbai. Behaviours of Lubrication Material on Contact Fatigue Crack[J]. Lubrication Engineering, 2002(6):4-5.
[26]RAMALHO L D C, BELINHA J, CAMPILHO R D S G. A New Crack Propagation Algorithm Combined with the Finite Element Method[J]. Journal of Mechanics, 2020, 36(4):405-422.
[27]BOGDANSKI S, LEWICKI P, SZYMANIAK M. Experimental and Theoretical Investigation of the Phenomenon of filling the RCF Crack with Liquid[J]. Wear, 2005, 258(7/8):1280-1287.
[28]何霞, 李梦媛, 江士凯, 等. 润滑介质对织构化表面摩擦学性能影响的实验研究[J]. 润滑与密封, 2018, 43(4):8-14.
HE Xia, LI Mengyuan, JIANG Shikai, et al. Experimental Study on the Influence of Different Lubrication Mediums on Tribological Properties of Textured Surface[J]. Lubrication Engineering, 2018, 43(4):8-14.