China Mechanical Engineering ›› 2022, Vol. 33 ›› Issue (12): 1388-1417.DOI: 10.3969/j.issn.1004-132X.2022.12.001
Previous Articles Next Articles
CHANG Keke;CHEN Leilei;ZHOU Ruonan;XIAO Xuelian;WANG Fangming;WANG Liping
Online:
2022-06-25
Published:
2022-07-07
常可可;陈雷雷;周若男;肖雪莲;王方明;王立平
通讯作者:
王立平(通信作者),男,1980年生,研究员、博士研究生导师。研究方向为海洋环境机械表面与界面。E-mail:wangliping@nimte.ac.cn。
作者简介:
常可可,男,1986年生,研究员、博士研究生导师。主要研究方向为苛刻环境服役涂层理论计算与设计。E-mail:changkeke@nimte.ac.cn。
基金资助:
CLC Number:
CHANG Keke, CHEN Leilei, ZHOU Ruonan, XIAO Xuelian, WANG Fangming, WANG Liping. Progresses of Surface Engineering in Extreme Environments and Its Common Scientific Problems[J]. China Mechanical Engineering, 2022, 33(12): 1388-1417.
常可可, 陈雷雷, 周若男, 肖雪莲, 王方明, 王立平. 极端环境表面工程及其共性科学问题研究进展[J]. 中国机械工程, 2022, 33(12): 1388-1417.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2022.12.001
[1]常可可, 王立平, 薛群基. 极端工况下机械表面界面损伤与防护研究进展[J]. 中国机械工程, 2020, 31(2):206-220. CHANG Keke, WANG Liping, XUE Qunji. Progresses of Damage and Protection for Surface and Interface in Machinery under Extreme Operating Conditions[J]. China Mechanical Engineering, 2020, 31(2):206-220. [2]SCHMITT G. Global Needs for Knowledge Dissemination, Research, and Development in Materials Deterioration and Corrosion Control[M]. New York:World Corrosion Organization, 2009, 38:14. [3]张占纲, 陈立波, 宋兰琪. 飞机发动机滑油系统部件磨损与可靠性研究[C]∥第三届全国现代设备管理及应用技术研讨会交流论文集. 秦皇岛, 2004:128-130. ZHANG Zhangang, CHEN Libo, SONG Lanqi. Research on Wear and Reliability of Aircraft Engine Lubricant System Components[C]∥Proceedings of 3rd National Symposium on Modern Equipment Management and Application Technology. Qinhuangdao, 2004:128-130. [4]SINGH B, JUKES P, POBLETE B, et al. 20 Years on Lessons Learned from Piper Alpha—the Evolution of Concurrent and Inherently Safe Design[J]. Journal of Loss Prevention in the Process Industries, 2010, 23(6):936-953. [5]师昌绪, 徐滨士, 张平, 等. 21世纪表面工程的发展趋势[J]. 中国表面工程, 2001, 14(1):2-7. SHI Changxu, XU Binshi, ZHANG Ping, et al. Development of Surface Engineering in the 21st Century[J]. China Surface Engineering, 2001, 14(1):2-7. [6]陈司悦, 王泽琦, 何雅柔. 周克崧院士:科技创新驱动高质量发展 持续推进材料表面工程技术研究[J]. 表面工程与再制造, 2019, 19(3):55-57. CHEN Siyue, WANG Zeqi, HE Yarou. Academician Zhou Kesong:Scientific and Technological Innovation Drives High-quality Development, and Continues to Advance the Research on Material Surface Engineering Technology[J]. Surface Engineering & Remanufacturing,2019, 19(3):55-57. [7]秦真波, 吴忠, 胡文彬. 表面工程技术的应用及其研究现状[J]. 中国有色金属学报, 2019, 29(9):2192-2216. QIN Zhenbo, WU Zhong, HU Wenbin. Application and Progress of Surface Engineering Technology[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9):2192-2216. [8]涂铭旌, 欧忠文. 表面工程的发展及思考[J]. 中国表面工程, 2012, 25(5):1-5. TU Mingjing, OU Zhongwen. Development and Consideration of Surface Engineering[J]. China Surface Engineering,2012, 25(5):1-5. [9]高玉魁. “材料的表面改性技术与工艺”专题序言[J]. 表面技术, 2016, 45(4):2-3. GAO Yukui. Preface to the Topic of “Materials Surface Modification Technology and Process”[J]. Surface Technology,2016, 45(4):2-3. [10]周智慧, 樊琳. 高能束热处理及其在工业中的应用[J]. 机械制造与自动化, 2004, 33(3):42-44. ZHOU Zhihui, FAN Lin. High Energy Beam Heat Treatment and Its Applications in Industry[J]. Machine Building & Automation, 2004, 33(3):42-44. [11]周晓刚, 纪飞飞. 多次激光喷丸作用下TC4钛合金的疲劳性能及微裂纹扩展预测模型[J]. 机械工程材料, 2021, 45(5):100-104. ZHOU Xiaogang, JI Feifei. Fatigue Properties and Crack Growth Prediction Model of TC4 Titanium Alloy Subjected to Multiple Laser Shot Peening[J]. Materials for Mechanical Engineering, 2021, 45(5):100-104. [12]宋晓岚, 李宇焜, 江楠,等. 化学机械抛光技术研究进展[J]. 化工进展, 2008(1):26-31. SONG Xiaolan, LI Yukun, JIANG Nan, et al. Recent Development of Chemical Mechanical Polishing[J]. Chemical Industrial and Engineering Progress, 2008(1):26-31. [13]燕禾, 吴春蕾, 唐旭福,等. 化学机械抛光技术研究现状及发展趋势[J]. 材料研究与应用, 2021, 15(4):432-440. YAN He, WU Chunlei, TANG Xufu, et al. Research Status and Development Trend of Chemical Mechanical Polishing Technology[J]. Materials Research and Application,2021, 15(4):432-440. [14]朱祖昌, 许雯, 王洪. 国内外渗碳和渗氮热处理工艺的新进展(三)[J]. 热处理技术与装备, 2013, 34(6):1-9. ZHU Zhuchang, XU Wen, WANG Hong. Novel Development of Carburizing and Nitriding Technology at Home and Abroad (3)[J]. Heat Treatment Technology and Equipment, 2013, 34(6):1-9. [15]薄鑫涛. PVD表面工程技术[J]. 热处理, 2018, 33(4):59-60. BO Xintao. PVD Surface Engineering Technology[J]. Heat Treatment, 2018, 33(4):59-60. [16]刘登禄, 陈征, 刘加杰. 浅谈合金催化技术在盐井钻机底座转盘梁的防腐应用[J]. 中国井矿盐, 2018, 49(4):22-24. LIU Ludeng, CHEN Zheng, LIU Jiajie. Antiseptic Application of Alloying on Rotary Disc Girder on Base of Salt Well Drilling[J]. China Well and Rock Salt,2018, 49(4):22-24. [17]徐滨士, 马世宁, 刘世参, 等. 表面工程技术的发展和应用[J]. 物理, 1999, 28(8):49-54. XU Binshi, MA Shining, LIU Shishen, et al. The Development and Application of Surface Engineering Technology[J]. Physics, 1999, 28(8):49-54. [18]徐丽萍, 毛杰, 张吉阜, 等. 表面工程技术在海洋工程装备中的应用[J]. 中国材料进展, 2014, 33(1):1-8. XU Liping, MAO Jie, ZHANG Jifu, et al. The Applications of Surface Engineering Technology in Marine Engineering Equipment[J]. Materials China, 2014, 33(1):1-8. [19]徐滨士. 基于表面工程的先进再制造技术[C]∥第五届全国表面工程学术会议. 西安, 2004:9-13. XU Binshi. Advanced Remanufacturing Technology Based on Surface Engineering[C]∥The Fifth National Conference on Surface Engineering. Xian, 2004:9-13 [20]徐滨士. 维修工程的新方向——再制造工程在中国的发展(二)[J]. 中国设备工程, 2009(4):29-32. XU Binshi. New Directions for Maintenance Engineering:The Development of Remanufacturing Engineering in China (Part Ⅱ)[J]. China Plant Engineering, 2009(4):29-32. [21]司力琼, 徐晓东. 航天装备材料表面处理工艺技术现状与发展方向[J]. 现代工业经济和信息化, 2017, 7(9):64-65. SI Liqiong, XU Xiaodong. Present Situation and Developing Trends of Surface Processing Technology for Aerospace Materials[J]. Modern Industrial Economy and Informationization,2017, 7(9):64-65. [22]杨华, 张邦双, 王洪伦. 表面工程技术在滨海航天发射场地面设备腐蚀防护中的应用及展望[C]∥2018年全国腐蚀电化学及测试方法学术交流会. 北京, 2018:280. YANG Hua, ZHANG Bangshuang, WANG Honglun. Application and Prospect of Surface Engineering Technology in Corrosion Protection of Ground Equipment in Binhai Space Launch Site[C]∥National Conference on Corrosion Electrochemistry and Testing Methods. Beijing, 2018:280. [23]周晖, 张凯锋, 刘兴光, 等. 基于航天器应用的先进表面工程技术[C]∥第十四届国际真空科学与工程应用学术会议. 沈阳, 2019:64-65. ZHOU Hui, ZHANG Kaifeng, LIU Xingguang, et al. Advanced Surface Engineering Technology Based on the Application of Aerospace Craft[C]∥14th International Vacuum Science and Engineering Application Conference. Shenyang, 2019:64-65. [24]张世波. 航空发动机表面工程应用的问题与思考[J]. 高能束流加工, 2014(22):52-55. ZHANG Shibo. Problem and Thinking of Aeroengine Surface Engineering Application[J].Power Beam Process, 2014(22):52-55. [25]潘学民, 袁力江, 雷明凯. 核主泵齿形联轴器内外齿渗氮表面斑点缺陷分析[J]. 中国核电, 2018, 11(3):337-340. PAN Xuemin, YUAN Lijiang, LEI Mingkai. Analysis of Spot Defects on Internal and External Tooth of Gear Coupling Nitrided in Nuclear Main Pump[J]. China Nuclear Power, 2018, 11(3):337-340. [26]杨闯, 刘静, 马亚芹,等. TC4钛合金表面低压渗氮层的显微组织与耐磨性能[J]. 机械工程材料, 2016, 40(6):98-101. YANG Chuang, LIU Jing, MA Yaqin, et al. Microstructure and Wear Resistance of Low Pressure Nitrided Layer on TC4 Titanium Alloy Surface[J]. Materials for Mechanical Engineering, 2016, 40(6):98-101. [27]徐滨士. 维修工程的新方向——再制造工程在中国的发展(一)[J]. 中国设备工程, 2009(3):17-19. XU Binshi. New Directions for Maintenance Engineering:The Development of Remanufacturing Engineering in China(Part Ⅰ)[J]. China Plant Engineering, 2009(3):17-19. [28]刘大响, 金捷, 彭友梅,等. 大型飞机发动机的发展现状和关键技术分析[J]. 航空动力学报, 2008, 23(6):976-980. LIU Daxiang, JIN Jie, PENG Youmei, et al. Summarization of Development Status and Key Technologies for Large Airplane Engines[J], Journal of Aerospace Power, 2008, 23(6):976-980. [29]张世波. 航空发动机表面工程应用的问题与思考[J]. 航空制造技术, 2014, 466(22):52-55. ZHANG Shibo. Problem and Thinking of Aeroengine Surface Engineering Application[J]. Aeronautical Manufacturing Technology,2014, 466(22):52-55. [30]刘继锋. 表面工程技术在海洋工程装备中的应用解析[J]. 中国资源综合利用, 2018, 36(11):179-181. LIU Jifeng. Application Analysis of Surface Engineering Technology in Marine Engineering Equipment[J]. China Resources Comprehensive Utilization,2018, 36(11):179-181. [31]陆军, 吴平平. 表面工程技术在海洋工程装备中的应用[J]. 机电工程技术, 2019, 48(8):160-161. LU Jun, WU Pingping. Application of Surface Engineering Technology in Marine Engineering Equipment[J]. Mechanical & Electrical Engineering Technology, 2019, 48(8):160-161. [32]YUAN Y, QIN Y, XU K, et al. Exploring U3Si2-based Alloys through Phase Diagram Investigations[J]. Journal of Nuclear Materials, 2021, 547:152770. [33]CHANG K, MENG F, GE F, et al. Theory-guided Bottom-up Besign of the FeCrAl Alloys as Accident Tolerant Fuel Cladding Materials[J]. Journal of Nuclear Materials, 2019, 516:63-72. [34]潘学民, 袁力江, 雷明凯. 核主泵齿形联轴器内外齿渗氮表面斑点缺陷分析[J]. 中国核电, 2018, 11(3):337-340. PAN Xuemin, YUAN Lijiang, LEI Mingkai. Analysis of Spot Defects on Internal and External Tooth of Gear Coupling Nitrided in Nuclear Main Pump[J]. China Nuclear Power, 2018, 11(3):337-340. [35]洪乃丰. 日本核危机与腐蚀相关联——国人应倍加重视腐蚀防护事业[J]. 表面工程资讯, 2011, 11(3):1-3. HONG Naifeng. Japans Nuclear Crisis is Linked to Corrosion:Chinese People Should Pay More Attention to the Cause of Corrosion Protection[J]. Information of Surface Engineering,2011, 11(3):1-3. [36]艾金山. 核阀密封面钴基合金激光熔覆层截形与显微硬度的调控研究[D]. 衡阳:南华大学, 2013. AI Jinshan. The Regulating Research of Cladding Layer Section Shape and Micro-hardness of Cobalt-based Alloys Used in Nuclear Valve Sealing Surface[D]. Hengyang:University of South China, 2013. [37]张云, 梁光顺. 国内外先进制造技术的现状与发展趋势[J]. 金属加工:冷加工, 2021(9):1-4. ZHANG Yun, LIANG Guangshun. Current Situation and Development Trend of Advanced Manufacturing Technology at Home and Abroad[J]. Metal Working(Metal Cutting), 2021(9):1-4. [38]逸飞. 研发先进制造技术服务天津工业发展——走进天津市高速切削与精密加工重点实验室[J]. 航空制造技术, 2021, 64(19):80-81. YI Fei. Research and Develop Advanced Manufacturing Technology to Serve Tianjins Industrial Development[J]. Aeronautical Manufacturing Technology,2021, 64(19):80-81. [39]欧忠文, 莫金川. 先进表面及先进表面处理技术 [C]∥第十二届全国表面工程会议. 重庆, 2014:2-6. OU Zhongwen, MO Jinchuan. Advanced Surface and Advanced Treatment Technology[C]∥12th National Surface Engineering Conference. Chongqing, 2014:2-6. [40]王春英, 张瑞, 杨季龙, 等. 表面工程技术在工程机械中的应用[J]. 建筑机械, 2012(21):89-93. WANG Chunying, ZHANG Rui, YANG Jilong, et al. Application of Surface Engineering Technology on Construction Machinery[J]. Construction Machinery, 2012(21):89-93. [41]江彦. 创新发展 实效推进——访科技部高新司先进制造与自动化处处长蔡文沁[J]. 中国制造业信息化, 2006(18):16-17. JIANG Yan. Innovative Development and Effective Promotion:Interview with Cai Wenqin, Director of Advanced Manufacturing and Automation Division, High-tech Department, Ministry of Science and Technology[J]. Machine Design and Manufacturing Engineering,2006, (18):16-17. [42]雪松. 面向国家重大战略需求 聚焦高性能表面精密加工——走进重庆市材料表面精密加工及成套装备工程技术研究中心[J]. 航空制造技术, 2021, 64(6):64-65. XUE Song. Facing National Major Strategic Needs, Focus on High-performance Surface Precision Machining[J]. Aeronautical Manufacturing Technology, 2021, 64(6):64-65. [43]胡晓娜, 吴彼, 陈威, 等. 极地船舶用低温钢耐磨性的研究进展[J]. 鞍钢技术, 2021(6):5-11. HU Xiaona, WU Bi, CHEN Wei, et al. Research Progress on Wear Resistance of Low-temperature Steel for Ships in Polar Regions[J]. Angang Technology, 2021(6):5-11. [44]杨晓峰, 班慧勇, 陈宏, 等. 低温钢的机理及研发和应用进展[J/OL]. 钢结构, 2022:1-9.https:∥kns.cnki.net/kcms/detail/10.1609.TF.20220121.1618.008.html. YANG Xiaofeng, BAN Huiyong, CHEN Hong, et al. Mechanism of Cryogenic Steel and Progress on Development and Application of Related Products[J/OL]. Steel Construction(Chinese & English), 2022:1-9.https:∥kns.cnki.net/kcms/detail/10.1609.TF.20220121.1618.008.html. [45]HATTORI T, INABA T, SHOUJI N, et al. Coating Protection of Steel Structures in Cold Climate [J]. NKK Technical Review, 1991(63): 69-75. [46]BJOERGUM A, KNUDSEN O O, KVERNBRATEN A K, et al. Corrosion Protecting Coating Systems in Arctic Areas [C]∥European Corrosion Congress. Stockholm, 2011: 4-8. [47]MOMBER A W, IRMER M, GLCK N. Performance Characteristics of Protective Coatings under Low-temperature Offshore Conditions. Part 2: Surface Status,Hoarfrost Accretion and Mechanical Properties[J]. Cold Regions Science and Technology,2016, 127: 109-114. [48]CALABRESE S J, MURRAY S F. Methods of Evaluating Materials for Icebreaker Hull Coatings[J]. ASTM Special Technical Publication, 1982, 769: STP29371S. [49]阿克苏诺贝尔助力中国科考破冰船“雪龙2”号破冰前行[J].上海建材, 2019(5):20. Akzonnobel Helps Chinese Research Icebreaker “Xuelong 2” Break the Ice and Move Ahead[J]. Shanghai Building Materials, 2019(5):20. [50]OH K, AHN S, EOM K, et al. Observation of Passive Films on Fe-20CrxNi(x=0, 10, 20wt.%) Alloys Using TEM and Cs-corrected STEM-EELS[J]. Corrosion Science, 2014, 79:34-40. [51]BEHNAMIAN Y, MOSTAFAEI A, KOHANDEHGHAN A, et al. A Comparative Study of Oxide Scales Grown on Stainless Steel and Nickel-based Superalloys in Ultra-high Temperature Supercritical Water at 800 ℃[J]. Corrosion Science, 2016, 106:188-207. [52]ALIDOKHT S A, MANIMUNDA P, VO P, et al. Cold Spray Deposition of a Ni-WC Composite Coating and Its Dry Sliding Wear Behavior[J]. Surface and Coatings Technology, 2016, 308:424-434. [53]HIDAYAT T, SHISHIN D, JAK E, et al. Thermodynamic Reevaluation of the Fe-O System[J]. Calphad, 2014, 48:131-144. [54]AGCA C, LINDWALL G, MCMURRAY J W, et al. Experimental and Computational Studies of Melting of the Spinel Phase in the Fe-Al-O Ternary System [J]. Calphad, 2020, 70:101798. [55]SALTYKOV P, FABRICHNAYA O, GOLCZEWSKI J, et al. Thermodynamic Modeling of Oxidation of Al-Cr-Ni Alloys [J]. Journal of Alloys and Compounds, 2004, 381(1):99-113. [56]BENAFIA S, RETRAINT D, PANICAUD B, et al. Influence of Surface Mechanical Attrition Treatment(SMAT) on Oxidation Behavior of 316L Stainless Steel at 650 ℃[J]. Advanced Materials Research, 2014, 996:906-911. [57]CHANDRA-AMBHORN S, JUTILARPTAVORN A, ROJHIRUNSAKOOL T. High Temperature Oxidation of Irons without and with 0.06 wt.% Sn in Dry and Humidified Oxygen[J]. Corrosion Science, 2019, 148:355-365. [58]NGAMKHAM K, CHANDRA-AMBHORN S. High Temperature Oxidation of Micro-alloyed Steel and Its Scale Adhesion[J]. Oxidation of Metals, 2017, 88(3):291-300. [59]MATHIYARASU J, PALANISWAMY N, MURALIDHARAN V S. Anodic Dissolution and Passivation of Binary Alloys—an Overview[J]. Indian Journal of Chemical Technology, 2002, 9(4):350-360. [60]POURBAIX M. Atlas of Electrochemical Equilibria in Aqueous Solution[J]. Material Science, Chemistry, 1974:93126068. [61]MACDONALD D D. Passivity—the Key to Our Metals-based Civilization[J]. Pure and Applied Chemistry, 1999, 71(6):951-978. [62]OKAMOTO G O. Passive Film of 18-8 Stainless Steel Structure and Its Function[J]. Chemischer Informationsdienst, 1973, 13(6):471-489. [63]HIRATA R, OOI A, TADA E, et al. Influence of the Degree of Saturation on Carbon Steel Corrosion in Soil[J]. Corrosion Science, 2021, 189:109568. [64]YU Q, DONG W, YANG X, et al. Insights into the Corrosion Mechanism and Electrochemical Properties of the Rust Layer Evolution for Weathering Steel with Various Cl- Deposition in the Simulated Atmosphere[J]. Materials Research Express, 2021, 8(3):036515. [65]PESSU F, BARKER R, NEVILLE A. The Influence of pH on Localized Corrosion Behavior of X65 Carbon Steel in CO2-saturated Brines[J]. Corrosion, 2015, 71(12):1452-1466. [66]NING J, ZHENG Y, BROWN B, et al. A Thermodynamic Model for the Prediction of Mild Steel Corrosion Products in an Aqueous Hydrogen Sulfide Environment[J]. Corrosion, 2015, 71(8):945-960. [67]RUPERT T J, SCHUH C A. Sliding Wear of Nanocrystalline Ni-W:Structural Evolution and the Apparent Breakdown of Archard Scaling[J]. Acta Materialia, 2010, 58(12):4137-4148. [68]CHEN X, HAN Z, LU K. Wear Mechanism Transition Dominated by Subsurface Recrystallization Structure in Cu-Al Alloys[J]. Wear, 2014, 320:41-50. [69]CHEN X, HAN Z, LU K. Enhancing Wear Resistance of Cu-Al Alloy by Controlling Subsurface Dynamic Recrystallization[J]. Scripta Materialia, 2015, 101:76-79. [70]CHEN X, SCHNEIDER R, GUMBSCH P, et al. Microstructure Evolution and Deformation Mechanisms during High Rate and Cryogenic Sliding of Copper[J]. Acta Materialia, 2018, 161:138-149. [71]LAUBE S, KAUFFMANN A, RUEBELING F, et al. Solid Solution Strengthening and Deformation Behavior of Single-phase Cu-base Alloys under Tribological Load[J]. Acta Materialia, 2020, 185:300-308. [72]CHANDROSS M, CURRY J F, BABUSKA T F, et al. Shear-induced Softening of Nanocrystalline Metal Interfaces at Cryogenic Temperatures[J]. Scripta Materialia, 2018, 143:54-58. [73]ZHANG J, ALPAS A T. Delamination Wear in Ductile Materials Containing Second Phase Particles[J]. Materials Science and Engineering:A, 1993, 160(1):25-35. [74]ZHANG Y, CHOUDHURI D, SCHARF T W, et al. Tribologically Induced Nanolaminate in a Cold-sprayed WC-reinforced Cu Matrix Composite:a Key to High Wear Resistance[J]. Materials & Design, 2019, 182:108009. [75]CHEN X, HAN Z, LI X, et al. Lowering Coefficient of Friction in Cu Alloys with Stable Gradient Nanostructures[J]. Science Advances, 2016, 2(12):e1601942. [76]ARGIBAY N, FURNISH T A, BOYCE B L, et al. Stress-dependent Grain Size Evolution of Nanocrystalline Ni-W and Its Impact on Friction Behavior[J]. Scripta Materialia, 2016, 123:26-29. [77]LOU M, XU K, CHEN L, et al. Development of Robust Surfaces for Harsh Service Environments from the Perspective of Phase Formation and Transformation[J]. Journal of Materials Informatics, 2021, 1:5. [78]CHILDS T H C. The Sliding Wear Mechanisms of Metals, Mainly Steels[J]. Tribology International, 1980, 13(6):285-293. [79]STOTT F H. The Role of Oxidation in the Wear of Alloys[J]. Tribology International, 1998, 31(1):61-71. [80]CUI X H, WANG S Q, WANG F, et al. Research on Oxidation Wear Mechanism of the Cast Steels[J]. Wear, 2008, 265(3):468-476. [81]DONG X, JAHANMIR S. Wear Transition Diagram for Silicon Nitride[J]. Wear, 1993, 165(2):169-180. [82]ZHOU Z, RAINFORTH W M, LUO Q, et al. Wear and Friction of TiAlN/VN Coatings Against Al2O3 in Air at Room and Elevated Temperatures[J]. Acta Materialia, 2010, 58(8):2912-2925. [83]JAVDONˇK D, MUSIL J, SOUKUP Z, et al. Tribological Properties and Oxidation Resistance of Tungsten and Tungsten Nitride Films at Temperatures Up to 500 ℃[J]. Tribology International, 2019, 132:211-20. [84]MOGHADDAM P V, PRAKASH B, VUORINEN E, et al. High Temperature Tribology of TiAlN PVD Coating Sliding Against 316L Stainless Steel and Carbide-free Bainitic Steel[J]. Tribology International, 2021, 159:106847. [85]LOU M, CHEN X, XU K, et al. Temperature-induced Wear Transition in Ceramic-metal Composites[J]. Acta Materialia, 2021, 205:116545. [86]FENG K, SHAO T. The Evolution Mechanism of Tribo-oxide Layer during High Temperature Dry Sliding Wear for Nickel-based Superalloy[J]. Wear, 2021, 476:203747. [87]LOU M, WHITE D R, BANERJI A, et al. Dry and Lubricated Friction Behaviour of Thermal Spray Low Carbon Steel Coatings:Effect of Oxidational Wear[J]. Wear, 2019, 432:102921. [88]YANG Z, BHOWMICK S, SEN F G, et al. Microscopic and Atomistic Mechanisms of Sliding Friction of MoS2:Effects of Undissociated and Dissociated H2O[J]. Applied Surface Science, 2021, 563:150270. [89]SEN F G, QI Y, ALPAS A T. Material Transfer Mechanisms between Aluminum and Fluorinated Carbon Interfaces[J]. Acta Materialia, 2011, 59(7):2601-2614. [90]HUANG Y, YAO Q, QI Y, et al. Wear Evolution of Monolayer Graphene at the Macroscale[J]. Carbon, 2017, 115:600-607. [91]AL MAHMUD K A H, KALAM M A, MASJUKI H H, et al. An Updated Overview of Diamond-like Carbon Coating in Tribology[J]. Critical Reviews in Solid State and Materials Sciences, 2015, 40(2):90-118. [92]WANG B, ZHANG Z, CHANG K, et al. New Deformation-induced Nanostructure in Silicon[J]. Nano Letters, 2018, 18(7):4611-4617. [93]CHEN X, KATO T, NOSAKA M. Origin of Superlubricity in a-C:H:Si Films:a Relation to Film Bonding Structure and Environmental Molecular Characteristic[J]. ACS Applied Materials & Interfaces, 2014, 6(16):13389-13405. [94]CHEN X, ZHANG C, KATO T, et al. Evolution of Tribo-induced Interfacial Nanostructures Governing Superlubricity in a-C:H and a-C:H:Si Films[J]. Nature Communications, 2017, 8(1):1675. [95]WOOD R J K, SUN D, THAKARE M R, et al. Interpretation of Electrochemical Measurements Made during Micro-scale Abrasion-corrosion [J]. Tribology International, 2010, 43(7):1218-27. [96]ARDILA M A N, LABIAPARI W S, COSTA H L, et al. Influence of Stainless Steel Specimen Topography on Micro-abrasion and Micro-abrasion-corrosion [J]. Wear, 2019, 426/427:1482-95. [97]LABIAPARI W S, ARDILA M A N, COSTA H L, et al. Micro Abrasion-corrosion of Ferritic Stainless Steels [J]. Wear, 2017, 376/377:1298-306. [98]PEI H, LI M, WANG P, et al. The Effect of Tensile Stress on Oxidation Behavior of Nickel-base Single Crystal Superalloy [J]. Corrosion Science, 2021, 191:109737. [99]WANG J, LIU S, BAI X, et al. Oxidation Behavior of Fe-Al-Cr Alloy at High Temperature:Experiment and a First Principle Study[J]. Vacuum, 2020, 173:109144. [100]CHEN L, LUO H, LI Z, et al. Effect of Al Doping on the Early-stage Oxidation of Ni-Al Alloys:a ReaxFF Molecular Dynamics Study[J]. Applied Surface Science, 2021, 563:150097. [101]LIU R, CUI Y, LIU L, et al. Study on the Mechanism of Hydrostatic Pressure Promoting Electrochemical Corrosion of Pure Iron in 3.5% NaCl Solution[J]. Acta Materialia, 2021, 203:116467. [102]ZHANG Z, DU Y, HUANG S, et al. Macroscale Superlubricity Enabled by Graphene-coated Surfaces[J]. Advanced Science, 2020, 7(4):1903239. [103]XU K, CHANG K, YU M, et al. Design of Novel NiSiAlY Alloys in Marine Salt-spray Environment:Part Ⅱ. Al-Ni-Si-Y Thermodynamic Dataset[J]. Journal of Materials Science & Technology, 2021, 89:186-198. [104]LIU S, CHANG K, MUSIC D, et al. Stress-dependent Prediction of Metastable Phase Formation for Magnetron-sputtered V1-xAlxN and Ti1-xAlxN Thin Films[J]. Acta Materialia, 2020, 196(1):313-324. [105]PENG Y, ZHOU P, DU Y, et al. Thermodynamic Evaluation of the C-Ta-Ti System and Extrapolation to the C-Ta-Ti-N System[J]. International Journal of Refractory Metals and Hard Materials, 2013, 40:36-42. [106]GERAMIFARD G, GOMBOLA C, FRANKE P, et al. Oxidation Behaviour of NiAl Intermetallics with Embedded Cr and Mo[J]. Corrosion Science, 2020, 177:108956. [107]LU P, SAAL J E, OLSON G B, et al. Computational Materials Design of a Corrosion Resistant High Entropy Alloy for Harsh Environments[J]. Scripta Materialia, 2018, 153:19-22. [108]WANG C, AI S, FANG D. A Phase-field Study on the Oxidation Behavior of Ni Considering Heat Conduction[J]. Acta Mechanica Sinica, 2016, 32(5):881-890. [109]LIN C, RUAN H, SHI SQ. Phase Field Study of Mechanico-electrochemical Corrosion[J]. Electrochimica Acta, 2019, 310:240-55. [110]PIRHAYATI P, JAMSHIDI A H. Phase-field Microstructure Simulation during Aluminum Alloy Friction Surfacing[J]. Surface and Coatings Technology, 2020, 402:126496. [111]LI J, BERES W. Three-dimensional Finite Element Modelling of the Scratch Test for a TiN Coated Titanium Alloy Substrate[J]. Wear, 2006, 260(11):1232-1242. [112]PEI Z, ZHANG D, ZHI Y, et al. Towards Understanding and Prediction of Atmospheric Corrosion of an Fe/Cu Corrosion Sensor via Machine Learning[J]. Corrosion Science, 2020, 170:108697. |
[1] | Yang Qin, Xu Xiang, Chen Liyun, Huang Kang. Micro Segment Gear Surface Engineering Process Modeling Based on Polychromatic Sets [J]. China Mechanical Engineering, 2016, 27(06): 815-821. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||