Tool Wear Detection Based on Improved CNN-BiLSTM Model
LIU Huiyong1,2;ZHANG Song1,2;LI Jianfeng1,2;LUAN Xiaona1,2
1.Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE,School of Mechanical Engineering,Shandong University,Jinan,250061
2.Key National Demonstration Center for Experimental Mechanical Engineering Education,Shandong University,Jinan,250061
LIU Huiyong, ZHANG Song, LI Jianfeng, LUAN Xiaona, . Tool Wear Detection Based on Improved CNN-BiLSTM Model[J]. China Mechanical Engineering, 2022, 33(16): 1940-1947,1956.
[1]刘献礼, 刘强, 岳彩旭, 等. 切削过程中的智能技术[J]. 机械工程学报, 2018, 54(16):45-61.
LIU Xianli, LIU Qiang, YUE Caixu, et al. Intelligent Machining Technology in Cutting Process[J]. Journal of Mechanical Engineering, 2018, 54(16):45-61.
[2]REHORN A G, JIANG J, ORBAN P E. State-of-the-art Methods and Results in Tool Condition Monitoring:a Review[J]. International Journal of Advanced Manufacturing Technology, 2005, 26(7/8):693-710.
[3]郭景超, 李安海. 刀具磨损状态监测技术研究进展[J]. 工具技术, 2019, 53(5):3-13.
GUO Jingchao, LI Anhai. Advances in Monitoring Technology of Tool Wear Condition[J]. Tool Engineering, 2019, 53(5):3-13.
[4]WANG W H, WONG Y S, HONG G S. 3D Measurement of Crater Wear by Phase Shifting Method[J]. Wear, 2006, 261(2):164-171.
[5]LI L, AN Q. An In-depth Study of Tool Wear Monitoring Technique Based on Image Segmentation and Texture Analysis[J]. Measurement, 2016, 79(2):44-52.
[6]LI N, CHEN Y, KONG D, et al. Force-based Tool Condition Monitoring for Turning Process Using V-support Vector Regression[J]. International Journal of Advanced Manufacturing Technology, 2017, 91(1/4):351-361.
[7]CHEN Y, JIN Y, JIRI G. Predicting Tool Wear with Multi-sensor Data Using Deep Belief Networks[J]. International Journal of Advanced Manufacturing Technology, 2018, 99(5/8):1917-1926.
[8]曹大理, 孙惠斌, 张纪铎, 等. 基于卷积神经网络的刀具磨损在线监测[J]. 计算机集成制造系统, 2020, 26(1):74-80.
CAO Dali, SUN Huibin, ZHANG Jiduo, et al. In-process Tool Condition Monitoring Based on Convolution Neural Network[J]. Computer Integrated Manufacturing Systems, 2020, 26(1):74-80.
[9]KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Image Net Classification with Deep Convolutional Neural Networks[J]. Communications of the ACM, 2017, 60(6):84-90.
[10]ZHU X, XIE F. Tool Wear State Monitoring Based on Long-term and Short-term Memory Neural Network[M]. Berlin:Springer, 2020:703-712.
[11]戴稳, 张超勇, 孟磊磊, 等. 采用深度学习的铣刀磨损状态预测模型[J]. 中国机械工程, 2020, 31(17):2071-2078.
DAI Wen, ZHANG Chaoyong, MENG Leiei, et al. Prediction Model of Milling Cutter Wear Status Based on Deep Learning[J]China Mechanical Engineering, 2020, 31(17):2071-2078.
[12]曹正志, 叶春明. 改进CNN-LSTM模型在滚动轴承故障诊断中的应用[J]. 计算机系统应用, 2021, 30(3):126-133.
CAO Zhengzhi, YE Chunming. Application of Improved CNN-LSTM Model in Fault Diagnosis of Rolling Bearings[J]. Computer Systems & Applications, 2021, 30(3):126-133.
[13]刘慧敏, 徐方远, 刘宝举, 等. 基于CNN-LSTM的岩爆危险等级时序预测方法[J]. 中南大学学报(自然科学版), 2021, 52(3):659-670.
LIU Huimin, XU Fangyuan, LIU Baoju, et al. Time-series Prediction Method for Risk Level of Rockburst Disaster Based on CNN-LSTM[J]. Journal of Central South University(Science and Technology), 2021, 52(3):659-670.
[14]厉大维, 沈明瑞, 张贺清, 等. 基于长短时记忆网络的深孔镗削刀具状态监测[J]. 现代制造工程, 2020(8):92-96.
LI Dawei, SHEN Mingrui, ZHANG Heqing, et al. Deep Hole Boring Tools Condition Monitoring Based on LSTM Network[J]. Modern Manufacturing Engineering, 2020(8):92-96.
[15]王普, 李天垚, 高学金, 等. 分层自适应小波阈值轴承故障信号降噪方法[J]. 振动工程学报, 2019, 32(3):548-556.
WANG Pu, LI Tianyao, GAO Xuejin, et al. Bearing Fault Signal Denoising Method of Hierarchical Adaptive Wavelet Threshold Function[J]. Journal of Vibration Engineering, 2019, 32(3):548-556.
[16]吕瑞兰, 吴铁军, 于玲. 采用不同小波母函数的阈值去噪方法性能分析[J]. 光谱学与光谱分析, 2004, 24(7):826-829.
LYU Ruilan, WU Tiejun, YU Ling. Performance Analysis of Threshold Denoising via Different Kinds of Mother Wavelets[J]. Spectroscopy and Spectral Analysis, 2004, 24(7):826-829.
[17]严春满, 王铖. 卷积神经网络模型发展及应用[J]. 计算机科学与探索, 2021, 15(1):27-46.
YAN Chunman, WANG Cheng. Development and Application of Convolutional Neural Network Model[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(1):27-46.
[18]杨柯, 范世东. 基于长短期记忆网络时序数据趋势预测及应用[J]. 推进技术, 2021(3):675-682.
YANG Ke, FAN Shidong. Long Short-term Memory Network Based Method and Its Application in Time-series Data Trend Prediction[J]. Journal of Propulsion Technology, 2021(3):675-682.
[19]赵志宏, 赵敬娇, 魏子洋. 基于BiLSTM的滚动轴承故障诊断研究[J]. 振动与冲击, 2021, 40(1):95-101.
ZHAO Zhihong, ZHAO Jingjiao, WEI Ziyang. Rolling Bearing Fault Diagnosis Based on BiLSTM Network[J]. Journal of Vibration Engineering, 2021, 40(1):95-101.
[20]YADAV A, VISHWAKARMA D K. Sentiment Analysis Using Deep Learning Architectures:a Review[J]. Artificial Intelligence Review, 2020, 53(6):4335-4385.
[21]何彦, 凌俊杰, 王禹林, 等. 基于长短时记忆卷积神经网络的刀具磨损在线监测模型[J]. 中国机械工程, 2020, 31(16):1959-1967.
HE Yan, LING Junjie, WANG Yulin, et al. In-process Tool Wear Monitoring Model Based on LSTM-CNN[J]. China Mechanical Engineering, 2020, 31(16):1959-1967.