1.Aeronautical Key Laboratory for Digital Manufacturing Technology,AVIC Manufacturing Technology Institute,Beijing,100024
2.School of Mechanical Engineering,University of Science and Technology Beijing,Beijing,100083
[1]刘检华, 孙清超, 程晖, 等. 产品装配技术的研究现状、技术内涵及发展趋势[J]. 机械工程学报, 2018, 54(11):2-28.
LIU Jianhua, SUN Qingchao, CHENG Hui, et al. Research Status, Technical Connotation and Development Trend of Product Assembly Technology[J]. Chinese Journal of Mechanical Engineering, 2018, 54(11):2-28.
[2]郭飞燕, 刘检华, 邹方, 等. 数字孪生驱动的装配工艺设计现状及关键实现技术研究[J]. 机械工程学报, 2019, 55(17):110-132.
GUO Feiyan, LIU Jianhua, ZOU Fang, et al. Digital Twin-driven Assembly Process Design Status and Key Implementation Technology Research[J]. Chinese Journal of Mechanical Engineering, 2019, 55(17):110-132.
[3]刘玉鑫, 张根保, 冉琰. 考虑多公差要素误差建模及产品装配精度预测[J]. 重庆大学学报, 2021, 44(1):11-19.
LIU Yuxin, ZHANG Genbao, RAN Yan. Considering Multi-tolerance Element Error Modeling and Product Assembly Accuracy Prediction[J]. Journal of Chongqing University, 2021, 44(1):11-19.
[4]CAO Y, LIU T, YANG J. A Comprehensive Review of Tolerance Analysis Models[J]. International Journal of Advanced Manufacturing Technology, 2018, 97(2):1-31.
[5]GUO J, LI B, LIU Z, et al. Integration of Geometric Variation and Part Deformation into Variation Propagation of 3-D Assemblies[J]. International Journal of Production Research, 2016, 54(19/20):1-14.
[6]张微. 基于实测数据的飞机部件数字化预装配技术研究[D]. 南京:南京航空航天大学, 2016.
ZHANG Wei. Research on Digital Pre-assembly Technology of Aircraft Components Based on Measured Data[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016.
[7]BAO J, WU D, CHENG Q, et al. Information Modeling and Visualization of Assembly Fat Model for Large-scale Product[J]. Key Engineering Materials, 2014, 579/580:711-718.
[8]朱永国, 邓斌, 霍正书, 等. 小样本检测数据驱动的飞机结构件装配关键偏差源诊断[J]. 中国机械工程, 2019, 30(22):2725-2733.
ZHU Yongguo, DENG Bin, HUO Zhengshu, et al. Diagnosis of Key Deviation Sources in Aircraft Structural Parts Assembly Driven by Small Sample Inspection Data[J]. China Mechanical Engineering, 2019, 30(22):2725-2733.
[9]易扬, 冯锦丹, 刘金山, 等. 复杂产品数字孪生装配模型表达与精度预测[J]. 计算机集成制造系统, 2021, 27(2):617-630.
YI Yang, FENG Jindan, LIU Jinshan, et al. Digital Twin Assembly Model Expression and Accuracy Prediction of Complex Products[J]. Computer Integrated Manufacturing System, 2021, 27(2):617-630.
[10]周石恩. 基于数字孪生的复杂产品装配建模与精度分析方法[D]. 杭州:浙江大学, 2019.
ZHOU Shien. Complex Product Assembly Modeling and Accuracy Analysis Method Based on Digital Twin[D]. Hangzhou:Zhejiang University, 2019.
[11]孙崇飞, 李欣, 朱一鸣, 等, 基于状态空间模型模型的飞行器装配误差敏感度研究[J]. 农业机械学报, 2020, 51(5):421-426.
SUN Chongfei, LI Xin, ZHU Yiming, et al. Research on the Sensitivity of Aircraft Assembly Errors Based on State Space Model[J]. Transactions of the Chinese Society of Agricultural Machinery, 2020, 51(5):421-426.
[12]SUN X, BAO J, LI J, et al. A Digital Twin-driven Approach for the Assembly-commissioning of High Precision Products[J]. Robotics and Computer-Integrated Manufacturing, 2020, 61:101839.
[13]杨角龙. 基于激光扫描的飞机蒙皮修配特征提取技术[D]. 南京:南京航空航天大学, 2019.
YANG Jiaolong. Feature Extraction Technology of Aircraft Skin Repair Based on Laser Scanning[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2019.
[14]陈亚军, 王会平. 装配尺寸链在机械部件修配中的应用[J]. 机械研究与应用, 2017, 30(5):76-78.
CHEN Yajun, WANG Huiping. The Application of Assembly Dimension Chain in the Repair of Mechanical Parts[J]. Machinery Research and Application, 2017, 30(5):76-78.
[15]HELING B, ASCHENBRENNER A, WALTER M, et al. On Connected Tolerances in Statistical Tolerance-cost-optimization of Assemblies with Interrelated Dimension Chains[J]. Procedia Cirp, 2016, 43:262-267.
[16]TLIJA M, GHALI M, AIFAOUI N. Integrated CAD Tolerancing Model Based on Difficulty Coefficient Evaluation and Lagrange Multiplier[J]. International Journal of Advanced Manufacturing Technology, 2019, 101(1):2519-2532.
[17]郭文斌, 杜立群, 李旭英, 等. 保证装配精度的修配法尺寸链分析[J]. 内蒙古农业大学学报, 2014, 35(2):108-111.
GUO Wenbin, DU Liqun, LI Xuying, et al. Dimensional Chain Analysis of Fitting Method to Ensure Assembly Accuracy[J]. Journal of Inner Mongolia Agricultural University, 2014, 35(2):108-111.
[18]赵志刚, 黄树运, 等. 基于随机惯性权重的简化粒子群优化算法[J]. 计算机应用研究, 2014, 31(2):361-363.
ZHAO Zhigang, HUANG Shuyun, et al. Simplified Particle Swarm Optimization Algorithm Based on Random Inertia Weights[J]. Computer Application Research, 2014, 31(2):361-363.
[19]RATNAWEERA A, HALGAMUGE S K, WATSON H C. Self-organizing Hierarchical Particle Swarm Optimizer with Time-varying Acceleration Coefficients[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3):240-255.
[20]张宏星, 许敏, 蒋祖华. 面向自动装配的装配特征定义与表达方法研究[J]. 机械科学与技术, 2005(7):824-826.
ZHANG Hongxing, XU Min, JIANG Zuhua. Research on the Definition and Expression Method of Assembly Features for Automatic Assembly[J]. Mechanical Science and Technology, 2005(7):824-826.
[21]谭昌柏. 逆向工程中基于特征的实体模型重建关键技术研究[D]. 南京:南京航空航天大学, 2006.
TAN Changbai. Research on the Key Technology of Feature-based Entity Model Reconstruction in Reverse Engineering[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2006.
[22]莫蓉, 张栋梁, 李春磊. 基于D-S理论的飞机装配尺寸链修配环选择评价方法[J]. 计算机集成制造系统, 2015, 21(9):2361-2368.
MO Rong, ZHANG Dongliang, LI Chunlei. Evaluation Method for Selection and Evaluation of Aircraft Assembly Dimension Chain Repair Ring Based on D-S Theory[J]. Computer Integrated Manufacturing System, 2015, 21(9):2361-2368.
[23]周启龙, 多吉顿珠, 益西央宗. 拉萨地区16个燕麦引进品种的灰色关联度评价[J]. 草地学报, 2020, 28(2):389-396.
ZHOU Qilong, DUOJI Dunzhu, YIXI Yangzong. Evaluation of the Gray Correlation Degree of 16 Introduced Oat Varieties in Lhasa[J]. Acta Grassland, 2020, 28(2):389-396.
[24]陈瑞启. 融合有限元分析的产品装配精度预测与修配模拟[D]. 杭州:浙江大学, 2020.
CHEN Ruiqi. Product Assembly Accuracy Prediction and Repair Simulation Combined with Finite Element Analysis[D]. Hangzhou:Zhejiang University, 2020.