China Mechanical Engineering ›› 2022, Vol. 33 ›› Issue (17): 2087-2097.DOI: 10.3969/j.issn.1004-132X.2022.17.010
Previous Articles Next Articles
XIONG Xiaochen 1,2,3;QIN Xunpeng 1,2,3;HUA Lin 1,2,3;HU Zeqi 1,2,3;JI Feilong 1,2,3
Online:
2022-09-10
Published:
2022-09-23
熊晓晨1,2,3;秦训鹏1,2,3;华林1,2,3;胡泽启1,2,3;纪飞龙1,2,3
通讯作者:
秦训鹏(通信作者),男,1962年生,教授、博士研究生导师。研究方向为汽车生态设计与循环利用技术、汽车智能制造技术、汽车轻量化设计制造技术。发表论文100余篇。E-mail:qxp915@hotmail.com。
作者简介:
熊晓晨,男,1989年生,博士研究生。研究方向为增材制造与再制造。E-mail:290360@whut.edu.cn。
基金资助:
CLC Number:
XIONG Xiaochen , QIN Xunpeng , HUA Lin , HU Zeqi , JI Feilong , . Research Status and Development of Hybrid Additive Manufacturing Technology[J]. China Mechanical Engineering, 2022, 33(17): 2087-2097.
熊晓晨, 秦训鹏, 华林, 胡泽启, 纪飞龙, . 复合式增材制造技术研究现状及发展[J]. 中国机械工程, 2022, 33(17): 2087-2097.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2022.17.010
[1]卢秉恒.增材制造技术——现状与未来[J]. 中国机械工程, 2020, 31(1):19-23. LU Bingheng. Additive Manufacturing Technology—Current Situation and Future[J]. China Mechanical Engineering, 2020, 31(1):19-23. [2]LU Bingheng, LI Dichen, TIAN Xiaoyong. Development Trends in Additive Manufacturing and 3D Printing[J]. Engineering, 2015, 1(1):85-89. [3]顾冬冬, 戴冬华, 夏木建, 等. 金属构件选区激光熔化增材制造控形与控性的跨尺度物理学机制[J]. 南京航空航天大学学报, 2017, 49(5):59-66. GU Dongdong, DAI Donghua, XIA Mujian, et al. Cross-scale Physical Mechanism of Structure and Performance Control Selective Laser Melting Additive Manufacturing of Metal Components[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2017, 49(5):59-66. [4]王华明, 张述泉, 王向明. 大型钛合金结构件激光直接制造的进展与挑战[J]. 中国激光, 2009(12):118-123. WANG Huaming, ZHANG Suquan, WANG Xiangming. Advances and Challenges in Laser Direct Manufacturing of Large Titanium Alloy Structural Parts[J]. Chinese Journal of Lasers, 2009(12):118-123. [5]王华明, 张述泉, 王韬, 等. 激光增材制造高性能大型钛合金构件凝固晶粒形态及显微组织控制研究进展[J]. 西华大学学报(自然科学版), 2018, 37(4):9-14. WANG Huaming, ZHANG Suquan, WANG Tao, et al. Research Progress on Solidification Grain Morphology and Microstructure Control of High Performance Large Titanium Alloy Components Fabricated by Laser Additive Manufacturing[J]. Journal of Xihua University(Natural Science Edition), 2018, 37(4):9-14. [6]TIAN Xiaoyong. Research on the Additive Manufacturing Process Based on High-speed Metal Particles Cold-state Impact[J]. Journal of Mechanical Engineering, 2016, 52(3):205-212. [7]MERZ R, PRINZ F B, RAMASWAMI K, et al. Shape Deposition Manufacturing[C]∥Proceedings of the Solid Freeform Fabrication Symposium. Austi, 1994:1-8. [8]WEISS L E, NEPLOTNIK G, PRINZ F B, et al. Shape Deposition Manufacturing of Wearable Computers[C]∥ Solid Freeform Fabrication Symposium. Austin, 1996:31-38. [9]SONG Y A, PARK S, CHAE S W. 3D Welding and Milling:Part Ⅱ—Optimization of the 3D Welding Process Using an Experimental Design Approach[J]. International Journal of Machine Tools and Manufacture, 2005, 45(9):1063-1069. [10]SONG Y A, PARK S, CHOI D, et al. 3D Welding and Milling:Part I—a Direct Approach for Freeform Fabrication of Metallic Prototypes[J]. International Journal of Machine Tools and Manufacture, 2005, 45(9):1057-1062. [11]KARUNAKARAN K P, SURYAKUMAR S, PUSHPA V, et al. Low Cost Integration of Additive and Subtractive Processes for Hybrid Layered Manufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2010, 26(5):490-499. [12]JENG J Y, LIN M C. Mold Fabrication and Modifacation Using Hybrid Processes of Selective Laser Cladding and Milling[J]. Journal of Materials Processing Technology, 2001,110(1):98-103. [13]DU W, BAI Q, ZHANG B. A Novel Method for Additive/Subtractive Hybrid Manufacturing of Metallic Parts[J]. Procedia Manufacturing, 2016, 5:1018-1030. [14]XIONG X, ZHANG H, WANG G. Metal Direct Prototyping by Using Hybrid Plasma Deposition and Milling[J]. Journal of Materials Processing Technology, 2009, 209(1):124-130. [15]HNNIGE J R, COLEGROVE P A, WILLIAMS S W. Wire+Arc Additively Manufactured Ti-6Al-4V with Machine Hammer Peening[J]. Procedia Engineering, 2017, 216:8-17. [16]COLEGROVE P A, COULES H E, FAIRMAN J, et al. Microstructure and Residual Stress Improvement in Wire and Arc Additively Manufactured Parts through High-pressure Rolling[J]. Journal of Materials Processing Technology, 2013, 213(10):1782-1791. [17]MARINELLI G, MARTINA F, GANGULY S, et al. Grain Refinement in an Unalloyed Tantalum Structure by Combining Wire+Arc Additive Manufacturing and Vertical Cold Rolling[J]. Additive Manufacturing. 2020, 32:101009. [18]MCANDREW A R, ALVAREZ ROSALES M, COLEGROVE P A, et al. Interpass Rolling of Ti-6Al-4V Wire+Arc Additively Manufactured Features for Microstructural Refinement[J]. Additive Manufacturing, 2018, 21:340-349. [19]DONOGHUE J, DAVIS A E, DANIEL C S, et al. On the Observation of Annealing Twins during Simulating β-grain Refinement in Ti-6Al-4V High Deposition Rate AM with In-process Deformation[J]. Acta Materialia, 2020, 186:229-241. [20]DAVIS A E, KENNEDY J R, DING J, et al. The Effect of Processing Parameters on Rapid-heating β Recrystallization in Inter-pass Deformed Ti-6Al-4V Wire-arc Additive Manufacturing[J]. Materials Characterization, 2020, 163:110298. [21]DAVIS A E, HNNIGE J R, MARTINA F, et al. Quantification of Strain Fields and Grain Refinement in Ti-6Al-4V Inter-pass Rolled Wire-arc AM by EBSD Misorientation Analysis[J]. Materials Characterization, 2020, 170:110673. [22]DONOGHUE J, ANTONYSAMY A A, MARTINA F, et al. The Effectiveness of Combining Rolling Deformation with Wire-arc Additive Manufacture on β-grain Refinement and Texture Modification in Ti-6Al-4V[J]. Materials Characterization, 2016, 114:103-114. [23]GU J, WANG X, BAI J, et al. Deformation Microstructures and Strengthening Mechanisms for the Wire+arc Additively Manufactured Al-Mg4.5Mn Alloy with Inter-layer Rolling[J]. Materials Science and Engineering:A, 2018, 712:292-301. [24]GU J, DING J, WILLIAMS S W, et al. The Effect of Inter-layer Cold Working and Post-deposition Heat Treatment on Porosity in Additively Manufactured Aluminum Alloys[J]. Journal of Materials Processing Technology, 2016, 230:26-34. [25]GU J, DING J, WILLIAMS S W, et al. The Strengthening Effect of Inter-layer Cold Working and Post-deposition Heat Treatment on the Additively Manufactured Al-6.3Cu Alloy[J]. Materials Science and Engineering:A, 2016, 651:18-26. [26]HNNIGE J R, COLEGROVE P A, GANGULY S, et al. Control of Residual Stress and Distortion in Aluminium Wire+arc Additive Manufacture with Rolling[J]. Additive Manufacturing, 2018, 22:775-783. [27]ZHANG H, WANG X, WANG G, et al. Hybrid Direct Manufacturing Method of Metallic Parts Using Deposition and Micro Continuous Rolling[J]. Rapid Prototyping Journal, 2013, 19(6):387-394. [28]FU Youheng, ZHANG Haiou, WANG Guilan, et al. Investigation of Mechanical Properties for Hybrid Deposition and Micro-rolling of Bainite Steel[J]. Journal of Materials Processing Technology, 2017, 250:220-227. [29]MEINERS F, IHNE J, JRGENS P, et al. New Hybrid Manufacturing Routes Combining Forging and Additive Manufacturing to Efficiently Produce High Performance Components from Ti-6Al-4V[J]. Procedia Manufacturing, 2020, 47:261-267. [30]BAMBACH M, SIZOVA I, SYDOW B, et al. Hybrid Manufacturing of Components from Ti-6Al-4V by Metal Forming and Wire-arc Additive Manufacturing[J]. Journal of Materials Processing Technology, 2020, 282:116689. [31]MA J, ZHANG Y, LI J, et al. Microstructure and Mechanical Properties of Forging-additive Hybrid Manufactured Ti-6Al-4V Alloys[J]. Materials Science and Engineering:A, 2021, 811:140984. [32]HOPPER C, PRUNCU C I, HOOPER P A, et al. The Effects of Hot Forging on the Preform Additive Manufactured 316 Stainless Steel Parts[J]. Micron, 2021, 143:103026. [33]PRUNCU C I, HOPPER C, HOOPER P A, et al. Study of the Effects of Hot Forging on the Additively Manufactured Stainless Steel Preforms[J]. Journal of Manufacturing Processes, 2020, 57:668-676. [34]NETO L, WILIAMS S T, DING J L, et al. Mechanical Properties Enhancement of Additive Manufactured Ti-6Al-4V by Machine Hammer Peening[C]∥Proceedings of the 1st International Conference on Advanced Surface Enhancement. Surface Enhancement. Singapore, 2020:121-132. [35]HNNIGE J R, DAVIS A E, HO A, et al. The Effectiveness of Grain Refinement by Machine Hammer Peening in High Deposition Rate Wire-Arc AM Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 2020, 51(7):3692-3703. [36]XIONG X, QIN X, JI F, et al. Microstructure and Mechanical Properties of Wire+Arc Additively Manufactured Mild Steel by Welding with Trailing Hammer Peening[J]. Steel Research International, 2021, 92(11):2100238. [37]FANG X, ZHANG L, CHEN G, et al. Microstructure Evolution of Wire-arc Additively Manufactured 2319 Aluminum Alloy with Interlayer Hammering[J]. Materials Science and Engineering:A, 2021, 800:140168. [38]权国政, 赵江, 卢顺, 等. 单道熔丝积材残余应力分布及锤击消除研究[J]. 塑性工程学报, 2020, 27(11):121-130. QUAN Guozheng, ZHAO Jiang, LU Shun, et al. Residual Stress Distribution and Hamming Removal of Single Fuse Accumulation Material[J]. Journal of Plasticity Engineering, 2020, 27(11):121-130. [39]ALMANGOUR B, YANG J M. Improving the Surface Quality and Mechanical Properties by Shot-peening of 17-4 Stainless Steel Fabricated by Additive Manufacturing[J]. Materials & Design, 2016, 110:914-924. [40]GOU J, WANG Z, HU S, et al. Effects of Ultrasonic Peening Treatment in Three Directions on Grain Refinement and Anisotropy of Cold Metal Transfer Additive Manufactured Ti-6Al-4V Thin Wall Structure[J]. Journal of Manufacturing Processes, 2020, 54:148-157. [41]TIAN Y, SHEN J, HU S, et al. Effects of Ultrasonic Peening Treatment Layer by Layer on Microstructure of Components Fabricated by Wire and Arc Additive Manufacturing[J]. Materials Letters, 2021, 284:128917. [42]ZHANG D, LI Y, WANG H, et al. Ultrasonic Vibration-assisted Laser Directed Energy Deposition In-situ Synthesis of NiTi Alloys:Effects on Microstructure and Mechanical Properties[J]. Journal of Manufacturing Processes, 2020, 60:328-339. [43]WANG H, HU Y, NING F, et al. Ultrasonic Vibration-assisted Laser Engineered Net Shaping of Inconel 718 Parts:Effects of Ultrasonic Frequency on Microstructural and Mechanical Properties[J]. Journal of Materials Processing Technology, 2020, 276:116395. [44]YUAN D, SHAO S, GUO C, et al. Grain Refining of Ti-6Al-4V Alloy Fabricated by Laser and Wire Additive Manufacturing Assisted with Ultrasonic Vibration[J]. Ultrason Sonochem, 2021, 73:105472. [45]BAI Xingwang, ZHANG Haiou, WANG Guilan. Electromagnetically Confined Weld-based Additive Manufacturing[J]. Procedia CIRP, 2013, 6:515-520. [46]BAI Xingwang, ZHANG Haiou, ZHOU Xiangman, et al. Electromagneto-fluid Coupling Simulation of Arc Rapid Prototyping Process with External High-frequency Magnetic Field[J]. Journal of Mechanical Engineering, 2016, 52:60-66. [47]ZHOU Xiangman, TIAN Qihua, DU Yixian, et al. Simulation of Heat and Mass Transfer in Arc Welding based Additive Forming Process with External Transverse Magnetic Field[J]. Journal of Mechanical Engineering, 2018, 54(12):193-206. [48]KALENTICS N, DE SEIJAS M O V, GRIFFITHS S, et al. 3D Laser Shock Peening—a New Method for Improving Fatigue Properties of Selective Laser Melted Parts[J]. Additive Manufacturing, 2020, 33:101112. [49]HACKEL L, RANKIN J R, RUBENCHIK A, et al. Laser Peening:a Tool for Additive Manufacturing Post-processing[J]. Additive Manufacturing, 2018, 24:67-75. [50]YASA E, KRUTH J P. Application of Laser Re-melting on Selective Laser Melting Parts[J]. Advances in Production Engineering &, 2011, 6(4):259-270. [51]YASA E, KRUTH J P, DECKERS J. Manufacturing by Combining Selective Laser Melting and Selective Laser Erosion/Laser re-melting[J]. CIRP Annals, 2011, 60(1):263-266. |
[1] | ZHA Xuming, YUAN Zhi, QIN Hao, XI Linqing, ZHANG Tao, JIANG Feng. Ultrasonic Impact Strengthening of Titanium Alloys:State-of-the-art and Prospectives [J]. China Mechanical Engineering, 2023, 34(19): 2269-2287. |
[2] | LI Fengqin, ZHAO Bo, HAO Wangshen, WANG Xiaobo. Surface Morphology Characteristics and Effectiveness Analysis of Ultrasonic Longitudinal Torsion Assisted Milling of Titanium Alloys [J]. China Mechanical Engineering, 2023, 34(06): 677-684,693. |
[3] | LI Xiang, ZHENG Guangming, YAN Pei, SUN Zuomin, CHENG Xiang, LIU Huanbao. Cutting Performance of Coated Tools and Machined Surface Integrity in Superalloy Clean Cutting [J]. China Mechanical Engineering, 2023, 34(04): 454-463. |
[4] | YU Liang, ZHENG Guangming, YANG Xianhai, CHENG Xiang, CHANG Kaishuo, LI Xuewei. Effects of Cryogenic Treatment on Cutting Performance of PCBN Tools [J]. China Mechanical Engineering, 2022, 33(20): 2450-2458. |
[5] | ZHAO Chongyang, LU Junyu, WANG Xiaobo, ZHAO Bo. Wettability of High-performance Aluminum Alloy Surfaces Machined Longitudinal-torsion Ultrasonic-assisted Milling [J]. China Mechanical Engineering, 2022, 33(16): 1912-1918,1927. |
[6] | YANG Jingjing, LI Cheng, TIE Ying. Low-velocity-impact Resistance Property of Sandwich Plates with Aluminum Folded Core [J]. China Mechanical Engineering, 2022, 33(13): 1629-1637. |
[7] | ZHONG Mingjun, WANG Kelu, CHENG Jing, OUYANG Delai, CUI Xia, LI Xin. Rheological Behavior and Physically-based Constitutive Model of TNTZ Titanium Alloy#br# [J]. China Mechanical Engineering, 2021, 32(10): 1233-1239. |
[8] | YANG Haoqin, SHAN Zhongde, LIU Feng, WANG Yifei, . Study on High Precision and High Efficiency Preparation Processes of Frozen Sand Molds#br# [J]. China Mechanical Engineering, 2021, 32(10): 1254-1259. |
[9] | CHEN Guang1;ZHAO Changcai 1;YANG Zhuoyun 1;DONG Guojiang2;CAO Miaoyan3. Effects of Q235 Coated Tubes on Bulging Behavior of AA5052 Aluminum Alloy Base Tube with Granular Medium [J]. China Mechanical Engineering, 2021, 32(01): 101-110. |
[10] | ZHENG Lihao1,2;ZHANG Chaoqun1,2;ZHANG Qingxin1,2;ZHANG Guotao1,2;LI Yongbing1,2. Research on Te-Cr-Cu Electrode Life for Aluminum Alloy RSW [J]. China Mechanical Engineering, 2020, 31(21): 2632-2637. |
[11] |
HUANG Renkai;DAI Ning;CHENG Xiaosheng.
Optimization of Support Structures Based on Numerical Simulation of SLM Temperature Field
[J]. China Mechanical Engineering, 2020, 31(19): 2346-2354.
|
[12] | LI Rongrong;YIN Yanguo;ZHANG Kaiyuan;ZENG Qingqin;CHEN Qi. Friction and Wear Properties of FeS/Cu Composite Materials Fabricated by Mechanical Alloying [J]. China Mechanical Engineering, 2020, 31(17): 2024-2030. |
[13] | CHEN Minghe;WANG Ning. Current Research and Development Trends in Constitutive Relation for High Strength Aluminum Alloys in Hot Plastic Deformation [J]. China Mechanical Engineering, 2020, 31(08): 997-1007. |
[14] | ZHANG Qingling1,2;JIN Miao1,2;ZHANG Rongqiang1,2;LI Qun1,2. Material Performance Tests of Q235 under Multiple Cyclic Loading Conditions [J]. China Mechanical Engineering, 2019, 30(21): 2527-2533. |
[15] | FANG Jinxiang1;WANG Yujiang2;DONG Shiyun2;XU Binshi2;YAN Shixing2;SONG Chaoqun2,3;SHU Fengyuan3;HE Peng3. Microstructure and Mechanics Properties of Interfaces between Laser Cladded Inconel718 Coating and Substrate [J]. China Mechanical Engineering, 2019, 30(17): 2108-2113. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||