[1]PREETI M, VIJAY G S, RAGHACENDRA K C, et al. Cryogenic Machining of Elastomers:a Review[J]. Machining Science and Technology, 2021, 25(3):477-525.
[2]KAKINUMA Y, KIDANI S, AOYAMA T. Ultra-precision Cryogenic Machining of Viscoelastic Polymers[J]. CIRP Annals— Manufacturing Technology, 2012, 61(1):79-82.
[3]张金豹,王永青,王凤彪,等.超低温条件下芳纶纤维复合材料的铣削加工性能[J].机械工程材料, 2016, 40(10):65-69.
ZHANG Jinbao, WANG Yongqing, Wang Fengbiao, et al. Milling Property of Aramid Fiber Composite under Cryogenic Temperature Condition[J]. Materials for Mechanical Engineeringe, 2016, 40(10):65-69.
[4]SHIH A J, LEWIS M A, STRENKOWSKI J S. End Milling of Elastomers-fixture Design and Tool Effectiveness for Material Removal[J]. Journal of Manufacturing Science and Engineering, 2004, 126(1):115-123.
[5]LUO J, DDING H, SHIH A J. Induction-heated Tool Machining of Elastomers—Part 2:Chip Morphology, Cutting Forces, and Machined Surfaces[J]. Machining Science and Technology, 2005, 9(4):567-588.
[6]GETU H, SPELT J K, PAPINI M. Thermal Analysis of Cryogenically Assisted Abrasive Jet Micromachining of PDMS[J]. International Journal of Machine Tools and Manufacture, 2011, 51(9):721-730.
[7]娄元帅. PDMS低温微磨料气射流加工装置及实验研究[D]. 南京:南京航空航天大学, 2019.
LOU Yuanshuai. Research on Device and Experiment of Cryogenic Abrasive Air Jet Machining of PDMS[D]. Nanjing :Nanjing University of Aeronautics and Astronautics, 2019.
[8]钱炳坤. 低温微磨料气射流加工微通道专用装置及实验研究[D]. 南京:南京航空航天大学, 2021.
QIAN Bingkun. Cryogenic Micro-abrasive Air Jet Machining Micro-channel Special Device and Experimental Research[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021.
[9]王岩, 陈俊杰. 对流换热系数测量及计算方法[J]. 液压与气动, 2016(4):14-20.
WANG Yan, CHEN Junjie. Measurement and Computation Methods of Convective Heat Transfer Coefficient[J]. Chinese Hydraulics & Pneumatics, 2016(4):14-20.
[10]常颖, 卢金栋, 靳菲, 等. 热成形中材料热物性参数对Beck反算KIHTC的影响[J]. 哈尔滨工业大学学报, 2015, 47(3):97-102.
CHANG Ying, LU Jindong, JIN Fei, et al. Influence of Thermal Properties on KIHTC in Hot Forming[J]. Journal of Harbin Institute of Technology, 2015,47(3):97-102.
[11]崔竞心. 基于第二类边界条件的导热系数反演方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
CUI Jingxin. Research of Thermal Conductivity Inversion Method Based on the Second Kind of Boundary Conditions[D]. Harbin: Harbin Institute of Technology, 2018.
[12]WANG Y Q, DAI M H, LIU K, et al. Research on Surface Heat Transfer Mechanism of Liquid Nitrogen Jet Cooling in Cryogenic Machining[J]. Applied Thermal Engineering, 2020, 179:115607.
[13]刘佳欣. 超低温冷却加工切削区域温度场建模研究[D]. 大连:大连理工大学, 2020.
LIU Jiaxin. Modeling of Temperature Distribution at Cutting Area in Cryogenic Machining[D]. Dalian: Dalian University of Technology, 2020.
[14]SHAO X Y, PU L, TANG X, et al. Experimental Study of Transient Liquid Nitrogen Jet Impingement Boiling on Concrete Surface Using Inverse Conduction Problem Algorithm[J]. Process Safety and Environmental Protection, 2021, 147:45-54.
[15]SANTOS M V, SANSINENA M, CHIRIFE J, et al. Determination of Heat Transfer Coefficients in Plastic French Straws Plunged in Liquid Nitrogen[J]. Cryobiology, 2014, 69(3):488-495.
[16]LEQUIEN P, POULACHON G, OUTEIRO J C, et al. Hybrid Experimental/Modelling Methodology for Identifying the Convective Heat Transfer Coefficient in Cryogenic Assisted Machining[J]. Applied Thermal Engineering, 2018, 128:500-507.
[17]ZHANG G G, SUN Y L, QIAN B K, et al. Experimental Study on Mechanical Performance of Polydimethylsiloxane(PDMS) at Various Temperatures[J]. Polymer Testing, 2020, 90:106670.
[18]SANSINENA M, SANTOS M V, ZARITZKY N, et al. Numerical Simulation of Cooling Rates in Vitrification Systems Used for Oocyte Cryopreservation[J]. Cryobiology, 2011, 63(1):32-37.
[19]MARK E J. Physical Properties of Polymers Handbook[M]. Berlin:Springer, 2007:214.
[20]REESE W. Thermal Properties of Polymers at Low Temperatures[J]. Journal of Macromolecular Science, Part A, 1969, 3(7):1257-1295.
[21]WYPYVH G. Handbook of Polymers[M]. Toronto: ChemTec Publishing, 2012:328-332.
[22]CHUANG J N, DARR S R, DONG J, et al. Heat Transfer Enhancement in Cryogenic Quenching Process[J]. International Journal of Thermal Sciences, 2020, 147:106117.
[23]代钰莹. 低温液体地面泄漏液池汽化过程的实验研究[D]. 大连:大连理工大学, 2019.
DAI Yuying. Experimental Study on the Pool Vaporization Process of Cryogenic Liquid Leakage on Land[D]. Dalian :Dalian University of Technology, 2019.
[24]ISSAM F, HAKIM A B, SAID A. Effect of Material and Geometric Parameters on Natural Convection Heat Transfer Over an Eccentric Annular-finned Tube[J]. International Journal of Ambient Energy, 2021, 42(8):929-939.
[25]李虹杨, 郑赟. 粗糙度对涡轮叶片流动转捩及传热特性的影响[J].北京航空航天大学学报, 2016, 42(10):2038-2047.
LI Hongyang, ZHENG Yun. Effect of Surface Roughness on Flow Transition and Heat Transfer of Turbine Blade[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(10):2038-2047.
[26]王智慧. 湍流度和粗糙度对椭圆柱绕流流动及传热特性的影响研究[D]. 青岛:青岛科技大学, 2019.
WANG Zhihui. Influence of Turbulence and Surface Roughness on Flow and Heat Transfer of an Elliptical Cylinder[D]. Qingdao :Qingdao University of Science & Technology, 2019.
[27]阮艺平. 铜表面物理化学特性对蒸汽冷凝传热特性的影响[D]. 上海:华东理工大学, 2012.
RUAN Yiping. Influence of Surface Physical and Chemical Properties on Heat Transfer Characteristics of Steam Condensation[D]. Shanghai:East China University of Science and Technology, 2012.
[28]SEARLE M, CROCKETT J, MAYNES D. Thermal Transport due to Liquid Jet Impingement on Superhydrophobic Surfaces with Isotropic Slip:Isoflux Wall[J]. International Journal of Heat and Mass Transfer, 2019, 140:518-532.
[29]ZHANG P, XU G H, Fu X, et al. Confined Jet Impingement of Liquid Nitrogen onto Different Heat Transfer Surfaces[J]. Cryogenics, 2010, 51(6):300-308.
[30]GRADEEN A G, SPELT J K, PAPINI M. Cryogenic Abrasive Jet Machining of Polydimethylsiloxane at Different Temperatures[J]. Wear, 2012, 274/275:335-344.
[31]ZHANG G G, SUN Y L, GAO H, et al. PDMS Material Embrittlement and Its Effect on Machinability Characteristics by Cryogenic Abrasive Air-jet Machining[J]. Journal of Manufacturing Processes, 2021, 67:116-127.
[32]MA Q, LIAO S L, MA Y C, et al. An Ultra-low-temperature Elastomer with Excellent Mechanical Performance and Solvent Resistance[J]. Advanced Materials, 2021,33(36): 2102096.
|