China Mechanical Engineering ›› 2022, Vol. 33 ›› Issue (19): 2269-2287.DOI: 10.3969/j.issn.1004-132X.2022.19.001
Previous Articles Next Articles
ZHANG Wulin1,2;FANXiaoqiang;2ZHU Minhao2;DUAN Haitao1
Online:
2022-10-10
Published:
2022-10-20
章武林1,2;樊小强2;朱旻昊2;段海涛1
通讯作者:
段海涛(通信作者),男,1981年生,研究员、博士研究生导师。研究方向为表面保护材料及其摩擦学应用技术。发表论文100余篇,申请/授权发明专利20余项。E-mail:duanhaitao2007@163.com。
作者简介:
章武林,男,1990年生,博士后研究人员。研究方向为钢轨打磨技术、磨石设计制造。
基金资助:
CLC Number:
ZHANG Wulin, FANXiaoqiang, ZHU Minhao, DUAN Haitao. Development Status and Prospect of Key Rail Grinding Equipment and Technology of Grinding Stone[J]. China Mechanical Engineering, 2022, 33(19): 2269-2287.
章武林, 樊小强, 朱旻昊, 段海涛. 钢轨打磨关键装备及磨石技术发展现状与展望[J]. 中国机械工程, 2022, 33(19): 2269-2287.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2022.19.001
[1]国家发展和改革委员会. 铁路“十三五”发展规划[R]. 北京:中国铁路总公司, 2017. National Development and Reform Commission. The 13th Five-year Plan for Railways[R]. Beijing:China Railways Corporation, 2017. [2]中国国家铁路集团有限公司工电部. 钢轨打磨手册[M]. 北京:中国铁道出版社有限公司, 2020. Ministry of Industry and Electricity of China National Railway Group Co. , Ltd.. Handbook of Rail Grinding[M]. Beijing:China Railway Publishing House Co. , Ltd. , 2020. [3]许鹏, 曾泓茗, 朱晨露, 等. 基于增强磁场涡流的高速轨道缺陷检测方法[J]. 中国机械工程, 2021, 32(4):454-459, 466. XU Peng, ZENG Hongming, ZHU Chenlu, et al. High Speed Track Defect Detection Methods Based on Enhanced Magnetic Field Eddy Currents[J]. China Mechanical Engineering, 2021, 32(4):454-459,466. [4]LEI Zhenyu, WANG Zhiqiang. Generation Mechanism and Development Characteristics of Rail Corrugation of Cologne Egg Fastener Track in Metro[J]. KSCE Journal of Civil Engineering, 2020, 24(6):1763-1774. [5]STEENBERGEN M. Rolling Contact Fatigue in Relation to Rail Grinding[J]. Wear, 2016, 356/357:110-121. [6]STEENBERGEN M. Rolling Contact Fatigue:Spalling Versus Transverse Fracture of Rails[J]. Wear, 2017, 380/381:96-105. [7]赵相吉. 表面缺陷对钢轨滚动磨损与接触疲劳性能影响研究[D]. 成都:西南交通大学, 2019. ZHAO Xiangji. Research on the Effect of Surface Defect on Rail Rolling Wear Contact Fatigue Performance of Rail[D]. Chengdu:Southwest Jiaotong University, 2019. [8]DYLEWSKI B, SALIMA B, MARION R. Multiscale Characterization of Head Check Initiation on Rails under Rolling Contact Fatigue:Mechanical and Microstructure Analysis[J]. Wear, 2016, 366/367:383-391. [9]SHUR E A, BORTS A I, BAZANOVA L V, et al. Determination of the Fatigue Crack Growth Rate and Time in Rails Using Fatigue Macrolines[J]. Russian Metallurgy Metally, 2020, 2020(4):477-482. [10]AL-JUBOORI A, DAVID W, LI Huijun, et al. Squat Formation and the Occurrence of Two Distinct Classes of White Etching Layer on the Surface of Rail Steel[J]. International Journal of Fatigue, 2017, 104:52-60. [11]STEENBERGEN M. Squat Formation and Rolling Contact Fatigue in Curved Rail Track[J]. Engineering Fracture Mechanics, 2015, 143:80-96. [12]FRANCISCO C. R H, GABRIEL P, KEVIN K. Rail Base Corrosion Problem for North American Transit Systems[J]. Engineering Failure Analysis, 2009, 16(1):281-294. [13]樊文刚, 刘月明, 李建勇. 高速铁路钢轨打磨技术的发展现状与展望[J]. 机械工程学报, 2018, 54(22):184-193. FAN Wengang, LIU Yueming, LI Jianyong. Development Status and Prospect of Rail Grinding Technology for High Speed Railway[J]. Journal of Mechanical Engineering, 2018, 54(22):184-193. [14]金学松, 杜星, 郭俊, 等. 钢轨打磨技术研究进展[J]. 西南交通大学学报, 2010, 45(1):1-11. JIN Xuesong, DU Xing, GUO Jun, et al. States of the Arts of Research of Rail Grinding[J]. Journal of Southwest Jiaotong University, 2010, 45(1):1-11. [15]ZHAO Xiangji, GUO Jun, WANG Hengyu, et al. Effects of Decarburization on the Wear Resistance and Damage Mechanisms of Rail Steels Subject to Contact Fatigue[J]. Wear, 2016, 364/365:130-143. [16]ZAREMBSKI A M, PALESE J. Does Rail Grinding Reduce Rail Defects[J]. Railway Track & Structure, 2011, 107(2):32-35. [17]MICHAL K, DANIEL Z, THOMAS P, et al. A New Grinding Strategy to Improve the Acoustic Properties of Railway Tracks[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2018, 232(1):214-221. [18]FAN Wengang, WANG Wenxi, WANG Junda, et al. Microscopic Contact Pressure and Material Removal Modeling in Rail Grinding Using Abrasive Belt[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2021, 235(1/2):3-12. [19]WILHELM K, DAVES W, STOCK R. Analysis of Rail Milling as a Rail Maintenance Process:Simulations and Experiments[J]. Wear, 2019, 438-439:203029. [20]刘真兵. 钢轨铣磨车磨削装置设计及磨削力控制研究[D]. 长沙:中南大学, 2013. LIU Zhenbin. The Design of Rail Milling Train Grinding Equipment and the Research of Grinding Force Control[D]. Changsha:Central South University, 2013. [21]ROGER S, MARSHAL M B, LEWIS R, et al. Rail Grinding for the 21st Century-Taking a Lead from the Aerospace Industry[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2015, 229(5):457-465. [22]MESARITIS M, SHAMSA M, CUERVO P A, et al. A Laboratory Demonstration of Rail Grinding and Analysis of Running Roughness and Wear[J]. Wear, 2020, 456/457:203379. [23]郭帅, 赵相吉, 何成刚, 等. 水介质下打磨磨痕对钢轨疲劳损伤的影响[J]. 中国机械工程, 2019, 30(8):889-895. GUO Shuai, ZHAO Xiangji, HE Chenggang, et al. Effects of Grinding Marks on Fatigue Damage of Rails under Water Conditions[J]. China Mechanical Engineering, 2019, 30(8):889-895. [24]ZHANG Wulin, LIU Changbao, YUAN Yongjie, et al. Probing the Effect of Abrasive Wear on the Grinding Performance of Rail Grinding Stones[J]. Journal of Manufacturing Processes, 2021, 64:493-507. [25]ZHOU Kun, DING Haohao, ZHANG Shuyue, et al. Modelling and Simulation of the Grinding Force in Rail Grinding that Considers the Swing Angle of the Grinding Stone[J]. Tribology International, 2019, 137:274-288. [26]许孝堂. 钢轨高速打磨机理研究[D]. 成都:西南交通大学, 2016. XU Xiaotang. Study on the Mechanism of High Speed Rail Grinding[D]. Chengdu:Southwest Jiaotong University, 2016. [27]章武林. 刚玉类磨料对钢轨高速打磨磨石性能的调控机制研究[D]. 成都:西南交通大学, 2021. ZHANG Wulin. Study on the Performances Regulatory Mechanisms of High-speed Rail Grinding Stone via Corundum Abrasives[D]. Chengdu:Southwest Jiaotong University, 2021. [28]周坤, 王文健, 刘启跃, 等. 钢轨打磨机理研究进展及展望[J]. 中国机械工程, 2019, 30(3):284-294. ZHOU Kun, WANG Wenjian, LIU Qiyue, et al. Research Progresses of Rail Grinding Mechanism[J]. China Mechanical Engineering, 2019, 30(3):284-294. [29]余念东, 张蒙. SF03-FFS型钢轨铣磨车的应用[J]. 铁路技术创新, 2013(1):37-38. YU Niandong, ZHANG Meng. Application of SF03-FFSRail Milling and Grinding Car[J]. Railway Technical Innovation, 2013(1):37-38. [30]陈会波. SF03-FFS型钢轨铣磨车在朔黄铁路的应用[J]. 中国铁路, 2013(12):85-88. CHEN Huibo. The Application of the SF03-FFS Rail Milling and Grinding Car on Shuozhou-Huanghua Raiway[J]. Chinese Railways, 2013(12):85-88. [31]HE Zhe, LI Jianyong, LIU Yueming, et al. Investigating the Effects of Contact Pressure on Rail Material Abrasive Belt Grinding Performance[J]. The International Journal of Advanced Manufacturing Technology, 2017, 93(1/4):779-786. [32]PANDIYAN V, TEGOEH T. Use of Acoustic Emissions to Detect Change in Contact Mechanisms Caused by Tool Wear in Abrasive Belt Grinding Process[J]. Wear, 2019, 436/437:203047. [33]FAN Wengang, LIU Yueming, SONG Xiaoyang, et al. Influencing Mechanism of Rubber Wheel on Contact Pressure and Metal Removal in Corrugated Rail Grinding by Abrasive Belt[J]. Journal of Manufacturing Science and Engineering, 2018, 140(12):1-8. [34]杨建昌, 王建宏, 朱红军, 等. 双动力48磨头钢轨打磨车研制[J]. 中国机械工程, 2019, 30(3):356-371. YANG Jianchang, WANG Jianhong, ZHU Hongjun, et al. Development of Dual-power 48 Grinding Stone Rail Grinding Train[J]. China Mechanical Engineering, 2019, 30(3):356-371. [35]ZHOU Kun, DING Haohao, STEENBERGEN M, et al. Temperature Field and Material Response as a Function of Rail Grinding Parameters[J]. International Journal of Heat and Mass Transfer, 2021, 175:12366. [36]西南交通大学. 十年磨一车!国内首台京沪高铁智能化快速钢轨打磨原型试验样车正式下线[EB/OL]. ( 2021-06-25 ) [2021-08-13]. https:∥news.swjtu.edu.cn/shownews-22407.shtml. [37]中国铁建高新装备股份有限公司. KGM-80Ⅱ顺利通过上线试用前技术评审![EB/OL]. (2021-07-21) [2021-08-15]. http:∥www.crcce.com.cn/art/2021/7/27/art_5175_3372925. html. [38]中国铁建高新装备股份有限公司. XM-1800钢轨铣磨车[EB/OL]. (2018-01-30)[2021-08-16]. http:∥www. crcce. com. cn/art/2018/1/30/art_5529_109.html. [39]ZHOU Kun, DING Haohao, WANG Wenjian, et al. Influence of Grinding Pressure on Removal Behaviours of Rail Material[J]. Tribology International, 2019, 134:417-426. [40]ZHOU Kun, DING Haohao, WANG Ruixiang, et al. Experimental Investigation on Material Removal Mechanism during Rail Grinding at Different Forward Speeds[J]. Tribology International, 2020, 143:106040. [41]YUAN Yongjie, ZHANG Wulin, ZHANG Pengfei, et al. Porous Grinding Wheels Toward Alleviating the Pre-fatigue and Increasing the Material Removal Efficiency for Rail Grinding[J]. Tribology International, 2021, 154:106692 [42]中国铁路总公司. Q/CR 1-2014中国铁路总公司企业标准:钢轨打磨车磨石订货技术条件[S]. 北京:中国铁道出版社, 2014. China Railways Corporation. Q/CR 1-2014China Railway Corporation Enterprise Standard:Technical Specifications for the Procurement of Grinding Wheel for the Rail Grinding Train[S]. Beijing:China Railway Publishing House Co., Ltd., 2014. [43]吉媛. 钢轨打磨车用砂轮评价技术的系统研究[D]. 北京:中国铁道科学研究院, 2019. JI Yuan. The Systematic Study in the Evaluation Technology of Grinding Wheel for Rail Grinding[D]. Beijing:China Academy of Railway Science, 2019. [44]吉媛, 田常海, 裴顶峰. 我国钢轨打磨车用砂轮标准与国外国际相关标准的对比分析[J]. 铁道技术监督, 2018, 46(9):5-8. JI Yuan, TIAN Changhai, PEI Dingfeng. Comparative Analysis of Chinese Rail Grinding Wheel Standards and Foreign International Standards[J]. Railway Quality Control, 2018, 46(9):5-8. [45]SUN Daming, JIANG Xiaosong, SUN Hongliang, et al. Microstructure and Mechanical Properties of Cu-ZTA Cermet Prepared by Vacuum Hot Pressing Sintering[J]. Materials Research Express, 2020, 7(2):26530. [46]SUN Daming, JIANG Xiaosong, SUN Hongliang, et al. Microstructure and Mechanical Properties of Fe-ZTA Cermet Prepared by Vacuum Hot-pressed Sintering[J]. Materials Research Express, 2020, 7(2):26518. [47]张国文, 贺春江, 裴顶峰. 酚醛树脂对钢轨打磨砂轮磨削性能的影响[J]. 铁道技术监督, 2015, 43(2):21-24. ZHANG Guowen, HE Chunjiang, PEI Dingfeng. Study on the Effect of Phenolic Resin on Grinding Performance of Rail Grinding Wheel[J]. Railway Quality Control, 2015, 43(2):21-24. [48]吴磊涛. Cu-Sn合金粉对树脂结合剂超硬制品力学性能和磨削性能影响的研究[D]. 郑州:河南工业大学, 2011. WU Leitao. Study on the Effect of Copper-Tin Alloy Powder on Mechanical Properties and Grinding Performance of the Resin Bond Superhard Products[D]. Zhengzhou:Henan University of Technology, 2011. [49]章武林, 樊小强, 张鹏飞, 等. 磨石强度对钢轨打磨行为的影响[J]. 摩擦学学报, 2020, 40(3):385-394. ZHANG Wulin, FAN Xiaoqiang, ZHANG Pengfei, et al. Probing the Eeffect of Grinding Stone Strength on Rail Grinding Behavior[J]. Tribology, 2020, 40(3):385-394. [50]WANG Ruixiang, ZHOU Kun, YANG Jinyu, et al. Effects of Abrasive Material and Hardness of Grinding Wheel on Rail Grinding Behaviors[J]. Wear, 2020, 454/455:203332. [51]黄贵刚. 钢轨CBN砂轮高速打磨试验台设计与试验研究[J]. 制造业自动化, 2020, 42(5):88-91. HUNAG Guigang. Design and Experimental Study of High Speed Grinding Test Bench for Rail CBN Grinding Wheel[J]. Manufacturing Automation, 2020, 42(5):88-91. [52]彭进, 邹文俊. 有机磨具[M]. 郑州:郑州大学出版社, 2017. PENG Jin, ZOU Wenjun. Organic Abrasive Tools[M]. Zhengzhou:Zhengzhou University Press, 2017. [53]李伯明, 赵波, 李清. 磨料、磨具与磨削技术[M]. 2版. 北京:化学工业出版社, 2016. LI Boming, ZHAO Bo, LI Qing. Abrasives, Abrasive Tools and Grinding Technology[M]. 2ed. Beijing:Chemical Industry Press, 2016. [54]王佳佳. U71Mn钢轨材料开槽砂轮干式磨削机理与工艺研究[D]. 长沙:湖南大学, 2018. WANG Jiajia. Research on Dry Grinding Mechanism and Technology for U71Mn Rail Grinding Material Using Slotted Wheel[D]. Changsha:Hunan University, 2018. [55]ZHAO Biao, DING Wenfeng, CHEN Zhenzhen, et al. Pore Structure Design and Grinding Performance of Porous Metal-bonded CBN Abrasive Wheels Fabricated by Vacuum Sintering[J]. Journal of Manufacturing Processes, 2019, 44:125-132. [56]ZHANG Wulin, ZHANG Pengfei, ZHANG Jun, et al. Probing the Effect of Abrasive Grit Size on Rail Grinding Behaviors[J]. Journal of Manufacturing Processes, 2020, 53:388-395. [57]WANG Wenjian, GU Kaikai, ZHOU Kun, et al. Influence of Granularity of Grinding Stone on Grinding Force and Material Removal in the Rail Grinding Process[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2019, 233(2):355-365. [58]裴顶峰, 贺春江, 张国文, 等. 一种用于制造正线钢轨打磨砂轮的组合物及其制备方法和用途: CN 104526576 A[P]. 2015-04-22. PEI Dingfeng, HE Chunjiang, ZHANG Guowen, et al. The Composition Used for the Manufacturing of Mainline Rail Grinding Wheel and Its Preparation Method and Application:CN 104526576 A[P]. 2015-04-22. [59]宋川, 付英志, 庾正伟, 等. 一种高速打磨车专用被动打磨砂轮成型工艺:CN 110303439 A[P]. 2019-10-08. SONG Chuan, FU Yingzhi, YU Zhengwei, et al. A Manufacturing Process for the Passive Rail Grinding Wheel Used for High Speed Rail Grinding Train:CN 110303439 A[P]. 2019-10-08. [60]史林峰, 张高亮, 赵延军, 等. 一种钢轨打磨用树脂结合剂CBN砂轮及其制备方法:CN 110116377 A[P]. 2019-08-13. SHI Linfeng, ZHANG Gaoliang, ZHAO Yanjun, et al. A Resin Bond CBN Rail Grinding Wheel and its Preparation Methods:CN 110116377 A[P]. 2019-08-13. [61]仲怀春. 一种钢轨打磨砂轮的制造方法:CN 102744692 A[P]. 2012-10-24. ZHONG Huaichun. A Method for the Manufacture of Rail Grinding Wheel:CN 102744692 A[P]. 2012-10-24. [62]KANEMATSU Y, SATOH Y. Influence of Type of Grinding Stone on Rail Grinding Efficiency[J]. Quarterly Reports of the Railway Technical Research Institute, 2011, 52(2):97-102. [63]兼松義一, 佐藤幸雄, 小木曽清高, ほか. レール削正の品質と効率の向上を目指す[J]. 鉄道総研レビュー, 2012, 12(69):12-15. YOSHIKAZU K, YUKIO S, KIYOTAKA O, et al. Aiming to Improve the Quality and Efficiency of Rail Grinding [J]. RTRI Review, 2012, 12 (69):12-15. [64]仲怀春, 于延如. 钢轨修磨专用砂轮的生产工艺方法: CN 101716753 A[P]. 2010-06-02. ZHONG Huaichun, YU Yanru. The Manufacturing Processes and Methods for Rail Grinding Stone: CN 101716753 A[P]. 2010-06-02. [65]王世新, 付英志, 高明. 一种双层砂轮模具:CN 205703799 U[P]. 2016-11-23. WANG Shixin, FU Yingzhi, GAO Ming. A Double-layer Mold for Grinding Wheel:CN 205703799 U[P]. 2016-11-23. [66]王世新, 付英志, 高明, 等. 一种高强度钢轨打磨车专用砂轮装置:CN 206912985 U[P]. 2018-01-23. WANG Shixin, FU Yingzhi, GAO Ming, et al. Special Grinding Wheel Device for High-strength Rail Grinding Car:CN 206912985 U[P]. 2018-01-23. [67]樊小强, 章武林, 张鹏飞, 等. 一种钢轨打磨列车专用砂轮及其制备方法:CN201811085549. X[P]. 2020-07-03. FAN Xiaoqiang, ZHANG Wulin, ZHANG Pengfei, et al. Special Grinding Wheel for Rail Grinding Train and Its Preparation Method:CN201811085549. X[P]. 2020-07-03. [68]ZHANG Pengfei, ZHANG Wulin, YUAN Yongjie, et al. Probing the Effect of Grinding-heat on Material Removal Mechanism of Rail Grinding[J]. Tribology International, 2020, 147:105942. [69]邹文俊, 刘鹏展, 李焕峰, 等. 一种钢轨被动打磨方式的测试平台:CN 110579244 A[P]. 2019-12-17. ZOU Wenjun, LIU Pengzhan, LI Huanfeng, et al. A Test Platform for Passive Rails Grinding:CN 110579244A[P]. 2019-12-17. [70]LIU Pengzhan, ZOU Wenjun, PENG Jin, et al. Study on the Effect of Grinding Pressure on Material Removal Behavior Performed on a Self-designed Passive Grinding Simulator[J]. Applied Sciences, 2021, 11(9):4128. [71]肖冰, 肖皓中, 肖博, 等. 一种钢轨高效打磨用砂轮及其制造方法:CN 108453638 A[P]. 2018-08-28. XIAO Bing, XIAO Haozhong, XIAO Bo, et al. Grinding Wheel for High-efficiency Rail Grinding and its Manufacturing Method:CN 108453638 A[P]. 2018-08-28. [72]WU Hengheng, XIAO Bing, XIAO Haozhong, et al. Wear Characteristics of Brazed Diamond Sheets with Different Grinding Time[J]. Wear, 2019, 432-433:202942. [73]WU Hengheng, XIAO Bing, XIAO Haozhong, et al. Study on Wear Characteristics of Brazed Diamond Sheet for Rail’s Composite Grinding Wheel under Different Pressures[J]. Wear, 2019, 424-425:183-192. [74]赵劲波, 肖博, 吴恒恒, 等. 自润滑复合砂轮的研制与性能试验[J]. 机械制造, 2019, 48(3):56-58. ZHAO Jinbo, XIAO Bin, WU Hengheng, et al. Development of Performance Test of Self-lubricated Composite Grinding Wheel[J]. Machinery, 2019, 48(3):56-58. [75]付英志, 庾正伟, 曹左权, 等. 一种快速开刃不烧轨钢轨打磨砂轮:CN 113089397A[P]. 2021-07-09. FU Yingzhi, YU Zhengwei, CAO Zuoquan, et al. A Kind of Grinding Wheel with High Self-sharpness and Averting Rail Burn:CN 113089397[P]. 2021-07-09. [76]LIN Bin, ZHOU Kun, GUO Jun, et al. Influence of Grinding Parameters on Surface Temperature and Burn Behaviors of Grinding Rail[J]. Tribology International, 2018, 122:151-162. [77]WU Yao, SHEN Mengbo, Qu Meina, et al. An Experimental Investigation on Surface Layer Damage in High-efficiency and Low-damage Grinding of Rail by Slotted CBN Grinding Wheel[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(7/8):2833-2841. [78]UHLMANN E, LYPOVKA P, HOCHSCHILD L, et al. Influence of Rail Grinding Process Parameters on Rail Surface Roughness and Surface Layer Hardness[J]. Wear, 2016, 366/367:287-293. [79]GU Kaikai, LIN Qiang, WANG Wenjian, et al. Analysis on the Effects of Rotational Speed of Grinding Stone on Removal Behavior of Rail Material[J]. Wear, 2015, 342/343:52-59. [80]周坤. 钢轨打磨过程中材料去除影响因素及机理研究[D]. 成都:西南交通大学, 2020. ZHOU Kun. Research on the Influence Factor and Mechanism of Material Removal during Rail Grinding[D]. Chengdu:Southwest Jiaotong University, 2020. [81]许孝堂, 王衡禹, 吴磊, 等. 水介质对钢轨高速被动式打磨影响的试验研究[J]. 润滑与密封, 2016, 41(11):41-44. XU Xiaotang, WANG Hengyu, WU Lei, et al. An Experimental Study on High-speed Rail Grinding under Wet Condition[J]. Lubrication Engineering, 2016, 41(11):41-44. [82]袁永杰. 气孔结构对钢轨打磨磨石性能的调控机制[D]. 成都:西南交通大学, 2021. YUAN Yongjie. The Performances Regulatory Mechanisms of Rail Grinding Stone with Pore Structure[J]. Chengdu:Southwest Jiaotong University, 2021. [83]JOACHIM M, ROBERT E, ROSEMARIE R, et al. Wear Characteristics of Second-phase-reinforced Sol-gel Corundum Abrasives[J]. Acta Materialia, 2006, 54(13):3605-3615. |
[1] | WU Zhiwei, FAN Wengang, WANG Qian, LIU Yi, MA Tengfei, . Experimental Investigation on Comprehensive Performance Comparison for Rail Grinding Using Abrasive Belt and Abrasive Wheel [J]. China Mechanical Engineering, 2022, 33(17): 2125-2132. |
[2] | YANG Jianchang, WANG Jianhong, ZHU Hongjun, XIANG Penglin, HUANG Gan, ZHOU Mingxiang. Development of Dual-power 48 Grinding Stone Rail Grinding Trains [J]. China Mechanical Engineering, 2019, 30(03): 365-371. |
[3] | ZHOU Kun, WANG Wenjian, LIU Qiyue, GUO Jun. Research Progresses and Prospect of Rail Grinding Mechanism [J]. China Mechanical Engineering, 2019, 30(03): 284-294. |
[4] | CHI Maoru, CAI Wubin, LIANG Shulin, LI Yixiao, SUN Jianfeng, JIN Xuesong, HE Xiang. Influences of Rail Grinding Deviations on Vehicle Dynamics Performances of High Speed Railways [J]. China Mechanical Engineering, 2019, 30(03): 261-265,283. |
[5] | Nie Xin, Guo Zhifu, He Zhicheng. Automatic Ultrasonic Evaluation of Vehicle Spot Welding Quality Based on Time-frequency Characteristics [J]. China Mechanical Engineering, 2016, 27(08): 1102-1106. |
[6] | Zhou Yulin, Zhang Zhiqiang, Hou Yulei, Wang Jianxin, Yu Baolin. Evaluation Criterions for Movement Scheme of Large Robotic Automatic Press Lines [J]. China Mechanical Engineering, 2014, 25(14): 1900-1904. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||