[1]贾承造,庞雄奇,姜福杰.中国油气资源研究现状与发展方向[J].石油科学通报,2016,1(1):2-23.
JIA Chengzao, PANG Xiongqi, JIANG Fujie. Research Status and Development Directions of Hydrocarbon Resources in China[J].Petroleum Science Bulletin, 2016,1(1):2-23.
[2]李鹤林.李鹤林文集(上)——石油机械用钢专辑[M].北京:机械工业出版社,2016:5.
LI Helin. Anthology of LI Helin(I)—Steel for Petroleum Machinery[M].Bejing:China Machine Press,2016:5.
[3]吴炜,孙强.应用机器学习加速新材料的研发[J].中国科学(物理学 力学 天文学),2018,48(10):58-70.
WU Wei, SUN Qiang. Applying Machine Learning to Accelerate New Materials Development[J]. Science in China(Series G), 2018,48(10):58-70.
[4]LOPEZ-BEZANILLA A, LITTLEWOOD P. Growing Field of Materials Informatics:Databases and Artificial Intelligence[J].MRS Communications, 2020, 10(1):1-10.
[5]WEN C, ZHANG Y, WANG C, et al. Machine Learning Assisted Design of High Entropy Alloys with Desired Property[J]. Acta Materialia, 2019, 170:109-117.
[6]ZHANG Y, WEN C, WANG C, et al. Phase Prediction in High Entropy Alloys with a Rational Selection of Materials Descriptors and Machine Learning Models[J]. Acta Materialia, 2020, 185:528-539.
[7]DONG G, LI X, ZHAO J, et al. Machine Learning Guided Methods in Building Chemical Composition-hardenability Model for Wear-resistant Steel[J]. Materials Today Communications, 2020:101332.
[8]CORREA-BAENA J P, HIPPALGAONKAR K, van DUREN J, et al. Accelerating Materials Development via Automation, Machine Learning, and High-performance Computing[J]. Joule, 2018, 2(8):1410-1420.
[9]RAMPRASAD R, BATRA R, PILANIA G, et al. Machine Learning in Materials Informatics:Recent Applications and Prospects[J]. NPJ Computational Materials, 2017, 3(1):1-13.
[10]WU X, KUMAR V, QUINLAN J R, et al. Top 10 Algorithms in Data Mining[J]. Knowledge and Information Systems, 2008, 14(1):1-37.
[11]QUINLAN J R. Induction of Decision Trees[J]. Machine Learning, 1986, 1(1):81-106.
[12]GOH G B, HODAS N O, VISHNU A. Deep Learning for Computational Chemistry[J]. Journal of Computational Chemistry, 2017, 38(16):1291-1307.
[13]BURGES C J C. A Tutorial on Support Vector Machines for Pattern Recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2):121-167.
[14]DING J, BAR-JOSEPH Z. MethRaFo:MeDIP-seq Methylation Estimate Using a Random Forest Regressor[J]. Bioinformatics, 2017, 33(21):3477-3479.
[15]DAI S, YU W, FENG C, et al. Design of New Biomedical Titanium Alloy Based on D-electron Alloy Design Theory and JMatPro Software[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(10):3027-3032.
[16]DEB K, PRATAP A, AGARWAL S, et al. A Fast and Elitist Multiobjective Genetic Algorithm:NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197.
|