China Mechanical Engineering ›› 2022, Vol. 33 ›› Issue (23): 2833-2843.DOI: 10.3969/j.issn.1004-132X.2022.23.007

Previous Articles     Next Articles

Optimization Design of TiO2 Porous Ceramic Structures for Catalyst Carrier Applications

ZOU Wuyou1;DU Chun1;AI Jianping2;SHAN Bin1   

  1. 1.School of Materials Science and Engineering,Huazhong University of Science and Technology,Wuhan,430074
    2.School of Materials and Mechatronics,Jiangxi Science and Technology Normal University,Nanchang,330038
  • Online:2022-12-10 Published:2022-12-27

面向催化剂载体应用的TiO2多孔陶瓷结构优化设计

邹无有1;杜纯1;艾建平2;单斌1   

  1. 1.华中科技大学材料科学与工程学院,武汉,430074
    2.江西科技师范大学材料与机电学院,南昌,330038
  • 通讯作者: 单斌(通信作者),男,1978年生,教授、博士研究生导师。研究方向为陶瓷材料增材制造、材料基因与大数据技术、新能源材料与催化、柔性光电子器件与装备。发表论文100余篇。E-mail:bshan@mail.hust.edu.cn。
  • 作者简介:邹无有,男,1997年生,硕士研究生。研究方向为陶瓷光固化增材制造、多孔结构优化设计。E-mail:1403906988@qq.com。

Abstract: Based on additive manufacturing, the periodic lattice structure of porous ceramics might effectively solve the problems of the poor recyclability of traditional powder catalysts and the low catalytic efficiency of bulk catalysts. Due to the complex relationship among structural characteristic parameters and application performance, the accurate and rapid design of periodic lattice structures remained a great challenge. Aiming at this challenge, a set of simulation models was constructed for porous ceramics, TiO2 ceramic samples with fine porous structure were successfully prepared by 3D printing technology, and the simulation models were verified and modified through experiments. The working mechanism of structural parameter on performance was further explored by using single-factor optimization analysis method, and angles a=153.4°, b=90°, c=45° were selected as the optimal parameters for periodic lattice structure design and optimization. The comparison results show that the pressure drop of the optimized porous structures decreases by 57.2% and the surface area increases by 25.3%. This paper provides a new structure design method for the applications of porous ceramics in the field of catalyst carrier applications. 

Key words:  , porous ceramics, catalyst carrier, periodic lattice structure, additive manufacturing technology

摘要: 周期性点阵结构的多孔陶瓷采用增材制造可有效解决传统粉末催化剂可回收性差和块状催化剂催化效率低的问题。由于结构特征参数与应用性能之间的复杂关系,周期性点阵结构的精确与快速设计仍是一个巨大的挑战。针对该挑战,构建了一套用于多孔陶瓷的仿真模型,采用3D打印技术成功制备了具有精细多孔结构的TiO2陶瓷样件,并通过实验实现了对仿真模型的验证和修正。在此基础上,采用单因素优化分析方法进一步探究了结构构成要素对性能的影响机制,选取角度a=153.4°、b=90°、c=45°作为最优参数设计了一种新型周期性点阵结构并进行了优化。对比结果显示,优化设计后的多孔结构的压降减小了57.2%,表面积增大了25.3%。该工作为扩展多孔陶瓷在催化剂载体领域的应用提供了一种新的结构设计方法。

关键词: 多孔陶瓷, 催化剂载体, 周期性点阵结构, 增材制造技术

CLC Number: