China Mechanical Engineering ›› 2022, Vol. 33 ›› Issue (23): 2879-2887,2897.DOI: 10.3969/j.issn.1004-132X.2022.23.012

Previous Articles     Next Articles

Topology-size-material Joint Optimization Design of Long-pan Unsupported Decks

CUI Yupeng1,2;YU Yang1,2;YU Jianxing1,2;LI Zhenmian1,2   

  1. 1.State Key Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University,Tianjin,300072
    2.Tianjin Key Laboratory of Port and Ocean Engineering,Tianjin University,Tianjin,300072
  • Online:2022-12-10 Published:2022-12-27

大跨度无支撑甲板拓扑-尺寸-材料联合优化设计

崔宇朋1,2;余杨1,2;余建星1,2;李振眠1,2   

  1. 1.天津大学水利工程仿真与安全国家重点实验室,天津,300072
    2.天津大学天津市港口与海洋工程重点实验室,天津,300072
  • 通讯作者: 余杨(通信作者),男,1988年生,副教授、博士。研究方向为海洋工程结构安全评估与优化。E-mail:yang.yu@tju.edu.cn。
  • 作者简介:崔宇朋,男,1996年生,博士研究生。研究方向为结构可靠性优化。E-mail:cyp_2015@tju.edu.cn。
  • 基金资助:
    工业和信息化部高技术船舶项目(MC-201917-C09);天津市科技计划(20JCQNJC 01010)

Abstract:  A concept-detailed joint design framework was proposed to carry out an integrated topology-size-material optimization study regarding stiffness, deformation, and dynamic vibration performance for a long-span unsupported deck under the spatial constraint. The dimensionality reduction processing strategy for the topology design domain of the stiffened panel was applied to address the issues of disconnected 3D solid units and low computational efficiency of the long-span deck. A TSC method, taking into account the efficiency of iteration and the approximation of the global optimal solution, was presented and applied to the concept design of the long-span deck in terms of strain energy, multi-case displacement, and first-order dynamic frequency. The effectiveness of the TSC method was demonstrated by 480 examples for maximizing the stiffness of stiffened panels. The size/material integrated design approach was suggested and combined with the automation technology for the detailed design of the long-span deck concept structure for engineering fabrication, i.e., optimization of the combination of cross-sectional dimensions of curved T-beams, panel thickness, and material elastic modulus. The results show that the curved long-span unsupported deck obtained efficiently by the concept-detailed joint design framework possesses both spatial and performance(stiffness, deformation, dynamic vibration)benefits compared to the conventional long-span deck. 

Key words:  , topology-size-material joint optimization, dimensionality reduction processing strategy, three-stage continuation(TSC) , method, long-span unsupported deck

摘要: 提出了一种加筋板概念-详细联合设计框架,以开展空间约束下的大跨度无支撑甲板刚度、变形及动态振动性能拓扑-尺寸-材料综合优化研究。应用加筋板拓扑设计域降维处理策略解决了大跨度甲板三维实体单元断连及计算效率低的问题。提出了兼顾迭代效率和逼近全局最优解的三段式延拓(TSC)法并应用于大跨度甲板的应变能、多工况位移及一阶动态频率的概念设计。通过480个加筋板刚度最大化算例证明了TSC法的有效性。提出了尺寸/材料一体化设计方法,并联合自动化技术对大跨度甲板概念结构进行了详细设计以便工程化制造,即曲形T形梁的截面尺寸、面板厚度及材料弹性模量组合优化。结果表明:与传统大跨度甲板相比,通过加筋板概念-详细联合设计框架高效获得的曲形大跨度无支撑甲板具备空间及性能(刚度、变形、动态振动)的双重优势。

关键词: 拓扑-尺寸-材料联合优化, 降维处理策略, 三段式延拓法, 大跨度无支撑甲板

CLC Number: