[1]LI Jingying, JING Xingjian, LI Zhengchao, et al. Fuzzy Adaptive Control for Nonlinear Suspension Systems Based on a Bioinspired Reference Model with Deliberately Designed Nonlinear Damping[J]. IEEE Transactions on Industrial Electronics, 2019, 66:8713-8723.
[2]RIPAMONTI F, CHIARABAGLIO A. A Smart Solution for Improving Ride Comfort in High-speed Railway Vehicles[J]. Journal of Vibration and Control, 2019, 25:1958-1973.
[3]TERMOUS H, SHRAIM H, TALJ R, et al. Coordinated Control Strategies for Active Steering, Differential Braking and Active Suspension for Vehicle Stability, Handling and Safety Improvement[J]. Vehicle System Dynamics, 2018, 57:1-36.
[4]周军超, 唐飞, 胡光忠. 基于全尺寸模型的半主动悬架车辆平顺性研究[J]. 重庆交通大学学报(自然科学版), 2019, 38(6):122-126.
ZHOU Junchao, TANG Fei, HU Guangzhong. Vehicle Ride Comfort of Semi-active Suspension Based on Full Size Model[J]. Jouenal of Chongqing Jiaotong University(Natural Science), 2019, 38(6):122-126.
[5]徐旭, 杨晓峰, 沈钰杰, 等. 基于滞后型系统理论的半主动悬架控制系统稳定性分析[J]. 振动与冲击, 2021, 40(7):208-215.
XU Xu, YANG Xiaofeng, SHEN Yujie, et al. Stability Analysis of Semi-active Suspension Control System Based on Hysteresis System Theory[J]. Journal of Vibration and Shock, 2021, 40(7):208-215.
[6]彭志召, 危银涛, 傅晓为, 等. 磁流变半主动悬架研究及实车试验分析[J]. 汽车工程, 2021, 43(2):269-277.
PENG Zhizhao, WEI Yintao, FU Xiaowei, et al. Research and Performance Test of Magnetorheological Semi-active Suspension System Based on a Real Vehicle[J]. Automotive Engineering, 2021, 43(2):269-277.
[7]王望予. 汽车设计[M]. 4版. 北京:机械工业出版社, 2004.
WANG Wangyu. Automobile Design[M]. 4th ed. Beijing:China Machine Press, 2004.
[8]赵甲泉. 商用车阻尼刚度高度可调油气悬架开发[D]. 杭州:浙江工业大学, 2016.
ZHAO Jiaquan. Commercial Vehicle Adjustable Height Damping Stiffness Hydro-pneumatic Suspension Development[D]. Hangzhou:Zhejiang University of Technology, 2016.
[9]段亮, 杨树凯, 宋传学, 等. 平衡悬架钢板弹簧动态特性的研究[J]. 机械工程学报, 2016, 52(6):153-158.
DUAN Liang, YANG Shukai, SONG Chuanxue, et al. Research on Dynamic Characteristics of the Tandem Suspension Leaf Spring[J]. Journal of Mechanical Engineering, 2016, 52(6):153-158.
[10]YUAN H, NGUYEN V, ZHOU H. Research on Semi-active Air Suspensions of Heavy Trucks Based on a Combination of Machine Learning and Optimal Fuzzy Control[J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2021, 5(2):159-172.
[11]ZHOU Huaxiang, WANG Peiling. Control of the Air Suspension System of Semi-trailer Trucks to Enhance the Road Friendliness[J]. Vibroengineering PROCEDIA, 2020,35:13-19.
[12]王霄锋.汽车悬架和转向系统设计[M]. 北京:清华大学出版社, 2015.
WANG Xiaofeng. Design of Automobile Suspension and Steering System[M]. Beijing:Tsinghua University Press, 2015.
[13]SONG Yong, LIU Shichuang, CHE Jiangxuan, et al. A Pneumatic Artificial Muscle Bionic Kangaroo Leg Suspension[J]. Recent Patents on Mechanical Engineering, 2019, 12(4):357-366.
[14]SONG Yong, SHI Jiahao, LI Zhanglong, et al. Modelling and Dynamic Response Characteristics Study of a PAM Bionic Kangaroo Leg Suspensionn[J]. The International Journal of Acoustics and Vibration, 2020, 25(2):254-265.
[15]KUZNETSOV A, MAMMADOV M, SULTAN I, et al. Optimization of Improved Suspension System with Inerter Device of the Quarter-car Model in Vibration Analysis[J].Archive of Applied Mechanics, 2011, 81(10):1427-1437.
[16]GRAICHEN K,HENTZELT S,HILDEBRANDT A, et al. Control Design for a Bionic Kangaroo[J].Control Engineering Practice, 2015, 42:106-117.
[17]宋勇, 杜锐, 李占龙, 等. 双菱形仿袋鼠腿悬架的PID和Fuzzy-PID控制特性研究[J]. 振动与冲击, 2020, 39(20):149-160.
SONG Yong, DU Rui, LI Zhanlong, et al. Characteristics Research Based on PID and Fuzzy-PID Control of a Double-diamond Bionic Kangaroo Leg Suspension[J]. Journal of Vibration and Shock, 2020, 39(20):149-160.
[18]余志生. 汽车理论[M]. 5版. 北京:机械工业出版社, 2017.
YU Zhisheng. Automobile Theory[M]. 5th ed. Beijing:China Machine Press, 2017.
[19]SHIN D, LEE G, YI K, et al. Motorized Vehicle Active Suspension Damper Control with Dynamic Friction and Actuator Delay Compensation for a Better Ride Quality[J]. Journal of Automobile Engineering, 2016, 230(8):1074-1089.
[20]ZHAO Leilei, YU Yuewei, ZHOU Changcheng, et al. Simulation of Vertical Characteristics and In-wheel Motor Vibration of Electric Vehicles with Asymmetric Suspension Damper under Road Impact[J]. International Journal of Modelling and Simulation, 2019, 39(1):14-20.
[21]陈龙,杨晓峰,汪若尘,等.改进的ISD三元件车辆被动悬架性能的研究[J]. 汽车工程, 2014, 36(3):340-345.
CHEN Long, YANG Xiaofeng, WANG Ruochen, et al. Research on Improved Passive Suspension Performance of ISD Three-element Vehicle[J]. Automotive Engineering, 2014 36(3):340-345.
[22]胡启国, 赵亮. 一种新型变刚度变阻尼悬架的性能分析及控制[J]. 现代制造工程, 2019(12):75-79.
HU Qiguo, ZHAO Liang. Performance Analysis and Control of a New Type of Variable Stiffness Variable Damping Suspension[J]. Modern Manufacturing Engineering, 2019(12):75-79.
[23]刘川. 跨界车后悬架变刚度螺旋弹簧的研究及应用[D]. 武汉:武汉理工大学, 2016.
LIU Chuan. Research and Application of the Variable Stiffness Coil Spring on Crossover Rear Suspension[D]. Wuhan:Wuhan University of Technology, 2016.
|