China Mechanical Engineering ›› 2023, Vol. 34 ›› Issue (03): 253-268.DOI: 10.3969/j.issn.1004-132X.2023.03.001
Previous Articles Next Articles
CHEN Qidi1,2;HU Xiaolong2;LIN Min1;SUN Xiaoxia1;ZHANG Tao1;ZHOU Zhixiong2
Online:
2023-02-10
Published:
2023-02-27
陈启迪1,2;胡小龙2;吝敏1;孙晓霞1;张涛1;周志雄2
作者简介:
陈启迪,男,1993 年生,工程师、博士。 研究方向为超精密加工、振动分析与控制、数据采集与信号处理等。E-mail:503830408@qq.com。
基金资助:
CLC Number:
CHEN Qidi, HU Xiaolong, LIN Min, SUN Xiaoxia, ZHANG Tao, ZHOU Zhixiong. Research Review of Error Compensation Technology for Ultra-precision Machining[J]. China Mechanical Engineering, 2023, 34(03): 253-268.
陈启迪, 胡小龙, 吝敏, 孙晓霞, 张涛, 周志雄. 超精密加工误差补偿技术研究综述[J]. 中国机械工程, 2023, 34(03): 253-268.
[1]张宏韬. 双转台五轴数控机床误差的动态实时补偿研究[D]. 上海:上海交通大学, 2011. ZHANG Hongtao. Research on Dynamic and Real-time Error Compensation for Two Turntable Five-axis CNC Machine Tool[D]. Shanghai:Shanghai Jiaotong University, 2011. [2]GENG Z, TONG Z, JIANG X. Review of Geometric Error Measurement and Compensation Techniques of Ultra-precision Machine Tools[J]. Light:Advanced Manufacturing, 2021, 2(2):211-227. [3]CHEN Z Z, WANG Z D, REN M J, et al. Development of an On-machine Measurement System for Ultra-precision Machine Tools Using a Chromatic Confocal Sensor[J]. Precision Engineering, 2022, 74:232-241. [4]ISO 230-1:2012.Test Code for Machine Tools—Part 1:Geometric Accuracy of Machines Operating under No-load or Quasi-static Conditions[S].Geneva:ISO, 2012. [5]LEETE D L. Automatic Compensation of Alignment Errors in Machine Tools[J]. International Journal of Machine Tool Design & Research, 1961, 1:293-324. [6]FRENCH D, HUMPHRIES S H. Compensation for Backlash and Alignment Errors in a Numerically Controlled Machine-tool by a Digital Computer Program[C]∥Proceedings of the 8th International M.T.D.R. Conference. Manchester, 1967:707-726. [7]OKAFOR A C, ERTEKIN Y M. Derivation of Machine Tool Error Models and Error Compensation Procedure for Three Axes Vertical Machining Center Using Rigid Body Kinematics[J]. International Journal of Machine Tools and Manufacture, 2000,40:1199-1213. [8]JUNG J H, CHOI J P, LEE S J. Machining Accuracy Enhancement by Compensating for Volumetric Errors of a Machine Tool and On-machine Measurement[J]. Journal of Materials Processing Technology, 2006,174:56-66. [9]FAN K, YANG J, YANG L. Unified Error Model Based Spatial Error Compensation for Four Types of CNC Machining Center:Part Ⅰ—Singular Function Based Unified Error Model[J]. Mechanical Systems and Signal Processing, 2015,60/61:656-667. [10]FRANK K. Apparatus for Compensating for Deviations in the Straightness of the Bed of a Machine Tool:US3600987[P].1971-08-24. [11]YANG Z, SADLER J P. Finite Element Analysis of Revolute Manipulators with Link and Joint Compliance by Joint-beam Elements[C]∥ASME 1992 Design Technical Conferences. Scottsdale, 1992:619-625. [12]HONG S W, SHIN Y J, LEE H S. An Efficient Method for Identification of Motion Error Sources From Circular Test Results in NC Machines[J]. International Journal of Machine Tools and Manufacture, 1997,37:327-340. [13]MCHICHI N A, MAYER J R R. Axis Location Errors and Error Motions Calibration for a Five-axis Machine Tool Using the Samba Method[J]. Procedia CIRP, 2014,14:305-310. [14]DONMEZ M A, BLOMQUIST D S, HOCKEN R J, et al. A General Methodology for Machine Tool Accuracy Enhancement by Error Compensation[J]. Precision Engineering, 1986,8:187-196. [15]殷国富, 阳红, 方辉. 数控机床进给系统全工作行程热误差补偿方法及其实施系统:中国, 201210134783[P]. 2012-09-19. YIN Guofu, YANG Hong, FANG Hui. Thermal Error Compensation Method and Its Implementation System for Full Working Stroke of NC Machine Tool Feed System:China,201210134783[P]. 2012-09-19. [16]IBARAKI S, KAKINO Y, LEE K, et al. Diagnosis and Compensation of Motion Errors in NC Machine Tools by Arbitrary Shape Contouring Error Measurement[J]. Laser Metrology & Machine Performance V, 2001:1-10. [17]HATAMURA Y, NAGAO T, MITSUISHI M, et al. Development of an intelligent Machining Center Incorporating Active Compensation for Thermal Distortion[J]. CIRP Annals, 1993,42:549-552. [18]YANG S, YUAN J, NI J. The Improvement of Thermal Error Modeling and Compensation on Machine Tools by CMAC Neural Network[J]. International Journal of Machine Tools and Manufacture, 1996,36:527-537. [19]CHEN J S. Computer-aided Accuracy Enhancement for Multi-axis CNC Machine Tool[J]. International Journal of Machine Tools and Manufacture, 1995,35:593-605. [20]YUAN J, NI J. The Real-time Error Compensation Technique for CNC Machining Systems[J]. Mechatronics, 1998,8:359-380. [21]LO C H, YUAN J, NI J. An Application of Real-time Error Compensation on a Turning Center[J]. International Journal of Machine Tools and Manufacture, 1995,35:1669-1682. [22]FINES J M, AGAH A. Machine Tool Positioning Error Compensation Using Artificial Neural Networks[J]. Engineering Applications of Artificial Intelligence, 2008,21:1013-1026. [23]SOONS J A, THEUWS F C, SCHELLEKENS P H. Modeling the Errors of Multi-axis Machines:a General Methodology[J]. Precision Engineering, 1992,14:5-19. [24]LIN P D, EHMANN K F. Direct Volumetric Error Evaluation for Multi-axis Machines[J]. International Journal of Machine Tools and Manufacture, 1993,33:675-693. [25]WANG S M, EHMANN K F. Measurement Methods for the Position Errors of a Multi-axis Machine. Part 2:Applications and Experimental Results[J]. International Journal of Machine Tools and Manufacture, 1999,39:1485-1505. [26]LAMIKIZ A, LACALLE LNL DE, OCERIN O, et al. The Denavit and Hartenberg Approach Applied to Evaluate the Consequences in the Tool Tip Position of Geometrical Errors in Five-axis Milling Centres[J]. International Journal of Advanced Manufacturing Technology, 2008,37:122-139. [27]LIN P D, TZENG C S. Modeling and Measurement of Active Parameters and Workpiece Home Position of a Multi-axis Machine Tool[J]. International Journal of Machine Tools and Manufacture, 2008,48:338-349. [28]FLORUSSEN G H J, DELBRESSINE F L M, van de MOLENGRAFT M J G, et al. Assessing Geometrical Errors of Multi-axis Machines by Three-dimensional Length Measurements[J]. Measurement, 2001,30:241-255. [29]ABBASZADEH-MIR Y, MAYER R, CLOUTIER G, et al. Theory and Simulation for the Identification of the Link Geometric Errors for a Five-axis Machine Tool Using a Telescoping Magnetic Ball-bar[J]. International Journal of Production Research, 2002,40:4781-4797. [30]ISO/TR 230-9:2005.Test Code for Machine Tools—Part 9:Estimation of Measurement Uncertainty for Machine Tool Tests According to Series ISO 230, Basic Equations[S].Geneva:ISO, 2005. [31]JIANG X G, CRIPPS R J. A Method of Testing Position Independent Geometric Errors in Rotary Axes of a Five-axis Machine Tool Using a Double Ball Bar[J]. International Journal of Machine Tools and Manufacture, 2015,89:151-158. [32]BRINGMANN B, KNAPP W. Model-based 'Chase-the-Ball' Calibration of a 5-Axes Machining Center[J]. CIRP Annals, 2006,55:531-534. [33]GIVI M, MAYER J R R. Validation of Volumetric Error Compensation for a Five-axis Machine Using Surface Mismatch Producing Tests and On-machine Touch Probing[J]. International Journal of Machine Tools and Manufacture, 2014,87:89-95. [34]MAENG S, MIN S. Simultaneous Geometric Error Identification of Rotary Axis and Tool Setting in an Ultra-precision 5-axis Machine Tool Using On-machine Measurement[J]. Precision Engineering, 2020,63:94-104. [35]HUANG N D, BI Q Z, WANG Y H. Identification of Two Different Geometric Error Definitions for the Rotary Axis of the 5-axis Machine Tools[J]. International Journal of Machine Tools and Manufacture, 2015,91:109-114. [36]DING S, HUANG X D, YU C J, et al. Identification of Different Geometric Error Models and Definitions for the Rotary Axis of Five-axis Machine Tools[J]. International Journal of Machine Tools and Manufacture, 2016,100:1-6. [37]GIVI M, MAYER J R R. Optimized Volumetric Error Compensation for Five-axis Machine Tools Considering Relevance and Compensability[J]. CIRP Journal of Manufacturing Science and Technology, 2016,12:44-55. [38]CHEN J X, LIN S W, ZHOU X L, et al. A Ballbar Test for Measurement and Identification the Comprehensive Error of Tilt Table[J]. International Journal of Machine Tools and Manufacture, 2016,103:1-12. [39]XIANG S T, YANG J G. Using a Double Ball Bar to Measure 10 Position-dependent Geometric Errors for Rotary Axes on Five-axis Machine Tools[J]. International Journal of Advanced Manufacture Technology, 2014,75:559-572. [40]HONG C F, IBARAKI S, MATSUBARA A. Influence of Position-dependent Geometric Errors of Rotary Axes on a Machining Test of Cone Frustum by Five-axis Machine Tools[J]. Precision Engineering, 2011,35:1-11. [41]XIANG S T, ALTINTAS Y. Modeling and Compensation of Volumetric Errors for Five-axis Machine Tools[J]. International Journal of Machine Tools and Manufacture, 2016,101:65-78. [42]LASEMI A, XUE D Y, GU P H. Accurate Identification and Compensation of Geometric Errors of 5-Axis CNC Machine Tools Using Double Ball Bar[J]. Measurement Science Technology, 2016,27:055004. [43]CHEN Q, LI W, JIANG C, et al. Separation and Compensation of Geometric Errors of Rotary Axis in 5-axis Ultra-precision Machine Tool by Empirical Mode Decomposition Method[J]. Journal of Manufacturing Processes, 2021, 68:1509-1523. [44]CHEN Z Z, WANG Z D, REN M J, et al. Development of an On-machine Measurement System for Ultra-precision Machine Tools Using a Chromatic Confocal Sensor[J]. Precision Engineering, 2022, 74:232-241. [45]NING P, ZHAO J, JI S, et al. Tool Path Generation of Ultra-precision Machining an Off-axial Four-mirror Anastigmat System Based on Accuracy Active Control[C]∥Seventh Asia Pacific Conference on Optics Manufacture and 2021 International Forum of Young Scientists on Advanced Optical Manufacturing (APCOM and YSAOM 2021). Shanghai, 2022:145-150. [46]HE S, XUAN J, SHI T. Sensitivity Analysis of Four-axis Ultra-precision Machine Tool Based on Screw Theory[C]∥International Conference on Nanomanufacturing. Singapore, 2022:66-77. [47]WU Z, SHEN J, PENG Y, et al. Review on Ultra-precision Bonnet Polishing Technology[J]. International Journal of Advanced Manufacturing Technology, 2022,121:2901-2921. [48]BRYAN J B. Telescoping Magnetic Ball Bar Test Gage:US4435905[P].1984-01-01. [49]IBARAKI S, KAKINO Y, AKAI T,et al. Identification of Motion Error Sources on Five-axis Machine Tools by Ball-bar Measurements (1st Report) [J]. Journal of the Japan Society for Precision Engineering, 2010,76:333-337. [50]IBARAKI S, TANIZAWA Y. Vision-based Measurement of Two-dimensional Positioning Errors of Machine Tools[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2011,5:315-328. [51]IBARAKI S, YUASA K, SAITO N, et al. A Framework for a Large-scale Machine Tool with Long Coarse Linear Axes under Closed-loop Volumetric Error Compensation[J]. IEEE/ASME Transactions on Mechatronics, 2018,23:823-832. [52]IBARAKI S, KIMURA Y, NAGAI Y, et al. Formulation of Influence of Machine Geometric Errors on Five-axis On-machine Scanning Measurement by Using a Laser Displacement Sensor[J]. Journal of Manufacturing Science and Engineering, 2015,137(2):021013. [53]杨建国, 任永强, 朱卫斌, 等. 数控机床热误差补偿模型在线修正方法研究[J]. 机械工程学报, 2003,39(3):81-84. YANG Jianguo, REN Yongqiang, ZHU Weibin, et al. Research on On-line Modeling Method of Thermal Error Compensation Model for CNC Machines[J]Chinese Journal of Mechanical Engineering, 2003,39(3):81-84. [54]沈金华. 数控机床误差补偿关键技术及其应用[D]. 上海:上海交通大学, 2008. SHEN Jinhua. Key Technology and Application in Error Compensation for CNC Machine Tools[D]. Shanghai:Shanghai Jiaotong University, 2008. [55]洪迈生, 苏恒, 李自军,等. 数控机床的运动精度诊断-评述与对策[J]. 机械工程学报, 2002,38(2):90-94. HONG Meisheng, SU Heng, LI Zijun, et al. Kinematic Accuracy Diagnosis of CNC Machine Tools -- Comments and Countermeasures[J]. Chinese Journal of Mechanical Engineering, 2002,38(2):90-94. [56]范晋伟, 费仁元, 田越, 等. 基于多体系统运动学理论的并联机床运动空间分析及仿真研究[J]. 机械工程学报, 2001,37(1):32-36. FAN Jinwei, FEI Renyuan, TIAN Yue, et al. Study on the Movement Volume Analysis and Simulation Method for Parallel Machine Tool Based on Multi-body System[J]. Chinese Journal of Mechanical Engineering, 2001,37(1):32-36. [57]刘焕牢, 李斌, 师汉民, 等. 嵌入式数控机床位置精度评定及误差补偿系统[J]. 华中科技大学学报:自然科学版, 2004,32(10):31-33. LIU Huanlao, LI Bin, SHI Hanmin, et al. Method of Position Accuracy Determination and Position Error Compensation of Embedded CNC Machine Tools[J]. Journal of Huazhong University of Science and Technology:Natural Science Edition, 2004,32(10):31-33. [58]RAMESH R, MANNAN M A, POO A N. Error Compensation in Machine Tools— a Review:Part I:Geometric, Cutting-force induced and Fixture-dependent Errors[J]. International Journal of Machine Tools and Manufacture, 2000,40:1235-1256. [59]ZHOU R, WANG KK, MERCHANT E. Modelling of Cutting Force Pulsation in Face-milling[J]. CIRP Annals, 1983,32:21-26. [60]JAYARAM S, KAPOOR S G, DEVOR R E. Estimation of the Specific Cutting Pressures for Mechanistic Cutting Force Models[J]. International Journal of Machine Tools and Manufacture, 2001,41:265-281. [61]CHEN Q D, LI W, REN Y H, et al. 3D Chatter Stability of High-speed Micromilling by Considering Nonlinear Cutting Coefficients, and Process Damping[J]. Journal of Manufacturing Processes, 2020,57:552-565. [62]SUKVITTAYAWONG S, INASAKI I. Optimization of Turning Process by Cutting Force Measurement[J]. JSME International Journal Ser 3, Vibration, Control Engineering, Engineering for Industry, 1991,34:546-552. [63]SPIEWAK S A. Acceleration Based Indirect Force Measurement in Metal Cutting Processes[J]. International Journal of Machine Tools and Manufacture, 1995,35:1-17. [64]SHIRAISHI M, AOSHIMA S. Sensorless In-process Measurement of Instantaneous Depth of Cut and Cutting force in Turning[C]∥Proceedings of the 1997 American Control Conference (Cat. No.97CH36041). Albuquerque, 1997:155-159. [65]KIM G M, CHU C N. Mean Cutting Force Prediction in Ball-end Milling Using Force Map Method[J]. Journal of Materials Processing Technology, 2004,146:303-310. [66]KIM J H, CHANG H K, HAN D C, et al. Cutting Force Estimation by Measuring Spindle Displacement in Milling Process[J]. CIRP Annals, 2005,54:67-70. [67]GIRARDIN F, REMOND D, RIGAL J F. High Frequency Correction of Dynamometer for Cutting Force Observation in Milling[J]. Journal of Manufacture Science and Engineering, 1970,132:1002-1008. [68]SCIPPA A, SALLESE L, GROSSI N, et al. Improved Dynamic Compensation for Accurate Cutting Force Measurements in Milling Applications[J]. Mechanical Systems and Signal Processing, 2015,54/55:314-324. [69]STEIN J, COLVIN D, CLEVER G, et al. Evaluation of DC Servo Machine Tool Feed Drives as Force Sensors[J]. Journal of Dynamic Systems Measurement and Control-Transactions of the ASME, 1986,108(4):279-288. [70]ALTINTAS Y. Prediction of Cutting Forces and Tool Breakage in Milling from Feed Drive Current Measurements[J]. Journal of Engineering for Industry, 1992,114:386. [71]LEE S Y, LEE J M. Specific Cutting Force Coefficients Modeling of End Milling by Neural Network[J]. KSME International Journal, 2000,14:622-632. [72]JEONG Y H, CHO D W. An Investigation of the Characteristics of the Stationary Feed Motor Current in NC Machines[J]. International Journal of Advanced Manufacturing Technology, 2003,22:553-561. [73]吴昊, 杨建国, 张宏韬, 等. 三轴数控铣床切削力引起的误差综合运动学建模[J]. 中国机械工程, 2008,19(16):1908-1911. WU Hao, YANG Jianguo, ZHANG Hongtao, et al. Cutting Force Induced Error Synthesis Modeling of A 3-axis CNC Milling Machine[J]. China Mechanical Engineering, 2008,19(16):1908-1911. [74]陈志俊. 数控机床切削力误差建模与实时补偿研究[D]. 上海:上海交通大学, 2008. CHEN Zhijun. Real-time Compensation of Cutting Force Induced Error on CNC Machine Tools[D]. Shanghai:Shanghai Jiaotong University, 2008. [75]吴昊, 基里维斯, 赵海涛, 等. 基于电流测量的数控机床切削力误差建模与实时补偿[J]. 机械制造, 2005,43:13-15. WU Hao, KILYVES, ZHAO Haitao, et al. Modeling and Real-time Compensation of Cutting force induced Errors in NC Machine Tools Based on Motor Current Measurement [J]. Machinery, 2005, 43:13-15. [76]BOHEZ E L J. Five-axis Milling Machine Tool Kinematic Chain Design and Analysis[J]. International Journal of Machine Tools and Manufacture, 2002,42:505-520. [77]SHI X L, LIU H L, LI H, et al. Comprehensive Error Measurement and Compensation Method for Equivalent Cutting forces[J]. International Journal of Advanced Manufacturing Technology, 2016,85:149-156. [78]BHATTACHARYYA A, SCHMITZ T L, PAYNE S W T, et al. Introducing Engineering Undergraduates to CNC Machine Tool Error Compensation[J]. Advances in Industrial and Manufacturing Engineering, 2022, 5:100089. [79]HUANG H, ZHAO H, FAN Z, et al. Analysis and Experiments of a Novel and Compact 3-DOF Precision Positioning Platform[J]. Journal of Manufacture Science and Engineering, 2013,27:3347-3356. [80]SALGADO M A, LACALLE L N L D, LAMIKIZ A, et al. Evaluation of the Stiffness Chain on the Deflection of End-mills under Cutting forces[J]. International Journal of Machine Tools and Manufacture, 2005,45:727-739. [81]ARMAREGO E J A, DESHPANDE N P. Computerized End-milling force Predictions with Cutting Models Allowing for Eccentricity and Cutter Deflections[J]. CIRP Annals, 1991,40:25-29. [82]URIARTE L, HERRERO A, ZATARAIN M, et al. Error Budget and Stiffness Chain Assessment in a Micromilling Machine Equipped with Tools Less Than 0.3 mm in Diameter[J]. Precision Engineering, 2007,31:1-12. [83]SHI X L, LIU H L, LI H, et al. Comprehensive Error Measurement and Compensation Method for Equivalent Cutting Forces[J]. International Journal of Advanced Manufacturing Technology, 2016,85:149-156. [84]DU Z C, ZHANG D, HOU H F, et al. Peripheral Milling Force Induced Error Compensation Using Analytical Force Model and APDL Deformation Calculation[J]. International Journal of Advanced Manufacturing Technology, 2017,88:3405-3417. [85]MA W K, HE G Y, ZHU L M, et al. Tool Deflection Error Compensation in Five-axis Ball-end Milling of Sculptured Surface[J]. International Journal of Advanced Manufacturing Technology, 2016,84:1421-1430. [86]PAN Z, WANG L, FANG Q, et al. Study on Tool Deflection Compensation Method Based on Cutting Force Observer for Orbital Drilling of CFRP/Ti Stacks[J]. Journal of Manufacturing Processes, 2022, 75:450-460. [87]LI W, WANG L, YU G. Force-induced Deformation Prediction and Flexible Error Compensation Strategy in Flank Milling Of Thin-walled Parts[J]. Journal of Materials Processing Technology, 2021, 297:117258. [88]WEI X, FENG X, MIAO E, et al. Sub-regional Thermal Error Compensation Modeling for CNC Machine Tool Worktables[J]. Precision Engineering, 2022, 73:313-325. [89]PUTZ M, REGEL J, WENZEL A, et al. Thermal Errors in Milling:Comparison of Displacements of the Machine Tool, Tool and Workpiece[J]. Procedia CIRP, 2019,82:389-394. [90]YE H, WEI X, ZHUANG X, et al. An Improved Robust Thermal Error Prediction Approach for CNC Machine Tools[J]. Machines, 2022, 10(8):624. [91]TANG Z, ZHOU Y, WANG S, et al. An Innovative Geometric Error Compensation of the Multi-axis CNC Machine Tools with Non-rotary Cutters to the Accurate Worm Grinding of Spur Face Gears[J]. Mechanism and Machine Theory, 2022, 169:104664. [92]BRYAN J. International Status of Thermal Error Research[J]. CIRP Annals, 1990,39:645-656. [93]YANG L, ZHAO W. Axial Thermal Error Compensation Method for the Spindle of a Precision Horizontal Machining Center[C]∥International Conference on Mechatronics & Automation. Chengdu, 2012:12962728. [94]POSTLETHWAITE S, ALLEN J, FORD D. Machine Tool Thermal Error Reduction-an Appraisal[J]. Proceedings of the Institution of Mechanical Engineers Part B—Journal of Engineering Manufacture, 1999,213:1-9. [95]ZHAO Haitao, YANG Jianguo , SHEN Jinhua. Simulation of Thermal Behavior of a CNC Machine Tool Spindle[J]. International Journal of Machine Tools and Manufacture, 2007,47(6):1003-1010. [96]YANG J, SHI H, FENG B, et al. Thermal Error Modeling and Compensation for a High-speed Motorized Spindle[J]. International Journal of Advanced Manufacturing Technology, 2015, 77(5/8):1005-1017. [97]JIN C, WU B, HU Y, et al. Identification of Thermal Error in a Feed System Based on Multi-class LS-SVM[J]. Frontiers of Mechanical Engineering, 2012, 7(1):47-54. [98]YANG H, NI J, Dynamic Neural Network Modeling for Nonlinear, Nonstationary Machine Tool Thermally Induced Error[J]. International Journal of Machine Tools and Manufacture, 2005,45(4):455-465. [99]CUI L, GAO W, ZHANG D, et al.Thermal Error Compensation for Telescopic Spindle of CNC Machine Tool Based on SIEMENS 840D System[J]. Transactions of Tianjin University, 2011,17:340-343. [100]WU Chengyang, XIANG Sitong, XIANG Wansheng. Spindle Thermal Error Prediction Approach Based on Thermal Infrared Images:a Deep Learning Method[J]. Journal of Manufacturing Systems, 2021, 59:67-80. [101]WEI X, FENG X, MIAO E, et al. Sub-regional Thermal Error Compensation Modeling for CNC Machine Tool Worktables[J]. Precision Engineering, 2022, 73:313-325. [102]WECK M, MCKEOWN P, BONSE R, et al. Reduction and Compensation of Thermal Errors in Machine Tools[J]. CIRP Annals, 1995,44:589-598. [103]LI Y, ZHAO W, LAN S, et al. A Review on Spindle Thermal Error Compensation in Machine Tools[J]. International Journal of Machine Tools and Manufacture, 2015,95:20-38. [104]LIANG Y, SU H, LU L, et al. Thermal Optimization of An Ultra-precision Machine Tool by the Thermal Displacement Decomposition and Counteraction Method[J]. International Journal of Advanced Manufacturing Technology, 2015,76:635-645. |
[1] | LIU Yi, YI Wangmin, YAO Jiantao, WANG Xingda, YU Peng, ZHAO Yongshen. Design and Research of Heavy-duty Posture-adjusting Assembly Robots in Narrow Space [J]. China Mechanical Engineering, 2024, 35(02): 324-336. |
[2] | YE Bosheng, JIN Xiongcheng, LI Han, SHAO Baiyan, LI Xiaokun, LI Siao. Robot Error Compensation Algorithm by Pseudo Target Iterative Generation [J]. China Mechanical Engineering, 2024, 35(01): 136-143. |
[3] | LI Guangbao, GAO Dong, LU Yong, PING Hao, ZHOU Yuanyuan. Adaptive Kalman Filtering and PSO-GA-BP Algorithm for Robot Error Compensation [J]. China Mechanical Engineering, 2023, 34(20): 2456-2465. |
[4] | TWANG Wei, MA Qianlun, BAI Zhenhua, WANG Ziang. Mechanics Property Prediction of Cold Rolled High Strength Steel Coils Based on GBD#br# [J]. China Mechanical Engineering, 2023, 34(18): 2222-2229. |
[5] | ZHENG Gang, YAN Lifang, ZHANG Kaiwei, ZHANG Xu. Research on High-precision Six-axis Detection and Error Compensation Method for Blisk Blade Profiles [J]. China Mechanical Engineering, 2023, 34(08): 908-915,922. |
[6] | LU Chengwei, QIAN Bozeng, WANG Huimin, XIANG Sitong. Key Geometric Error Analysis and Compensation Method of Five-axis CNC Machine Tools under Workpiece Feature Decomposition [J]. China Mechanical Engineering, 2022, 33(14): 1646-1653. |
[7] | GAO Wenbin, HUANG Qi, YU Xiaoliu, . Research on Geometric Error Analysis and Parameter Identification of Modular Robots [J]. China Mechanical Engineering, 2022, 33(07): 811-817,851. |
[8] | XU Zhiqiang, WANG Qiuliang, WU Heng, WANG Jun, ZHANG Gaofeng. Preparation and Properties of MREATs [J]. China Mechanical Engineering, 2021, 32(22): 2673-2680. |
[9] | ZHANG Jianxun, YAO Bin, DAI Yu, XIA Guangming, . A Review of Force Sensing Technology in Robot-assisted Laparoscopic Surgery [J]. China Mechanical Engineering, 2021, 32(21): 2521-2531. |
[10] | HU Lai, ZHA Jun, ZHU Yongsheng, WEI Wenming, LI Dongya, LUO Ming, NIU Wentie, CHEN Yaolong. Research Progresses of Basic Equipment Manufacturing and High-grade Integrated CNC Machine Tools [J]. China Mechanical Engineering, 2021, 32(16): 1891-1903. |
[11] | LI Yaozhong, WANG Shuting, JIANG Liquan, MENG Jie, XIE Yuanlong, . Motion Planning of Mobile Manipulators Based on RRT with Sparse Nodes [J]. China Mechanical Engineering, 2021, 32(12): 1462-1470. |
[12] | WU Jinhui1,2;TAO Yourui1,2. Review on Research Status of Positioning Accuracy Reliability of Industrial Robots [J]. China Mechanical Engineering, 2020, 31(18): 2180-2188. |
[13] | FU Guoqiang, RAO Yongjian, XIE Yunpeng, GAO Hongli, DENG Xiaolei. Error Sensitivity Analysis of Motion Axis for Five-axis CNC Machine Tools with Geometric Error Contribution [J]. China Mechanical Engineering, 2020, 31(13): 1518-1528. |
[14] | FANG Fengzhou. On Atomic and Close-to-atomic Scale Manufacturing——Development Trend of Manufacturing Technology [J]. China Mechanical Engineering, 2020, 31(09): 1009-1021. |
[15] | CHEN Yong, CHEN Yi, PEI Zhi, WANG Cheng. Digital Twin: Recent Development and Future Trend from Bibliometrics Perspective [J]. China Mechanical Engineering, 2020, 31(07): 797-807. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||