[1]MONDAL A, HOSSAIN A. An Optimal Model and Deployment Solution of Airship Based on Multiobjective Evolutionary Algorithm for Near Space Communication System[C]∥IEEE 7th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON). Prayagraj, India, 2020:1-6.
[2]DAI Q, CAO L, ZHANG G, et al. Thermal Performance Analysis of Solar Array for Solar Powered Stratospheric Airship[J]. Applied Thermal Engineering, 2020, 171:115077.
[3]ZHANG L, ZHU W, DU H, et al. Multidisciplinary Design of High Altitude Airship Based on Solar Energy Optimization[J]. Aerospace Science and Technology, 2021, 110:106440.
[4]邓小龙, 杨希祥, 麻震宇, 等. 基于风场环境利用的平流层浮空器区域驻留关键问题研究进展[J]. 航空学报, 2019, 40(8):23-36.
DENG Xiaolong, YANG Xixiang, MA Zhenyu, et al. Research Progress on Key Issues of Stratospheric Aerostat Regional Residence Based on Wind Farm Environment Utilization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):23-36.
[5]彭海峰, 董二宝, 张世武, 等. 超弹性蒙皮蜂窝芯的设计及等效模量研究[J]. 中国机械工程, 2012, 23(6):717-720.
PENG Haifeng, DONG Erbao, ZHANG Shiwu, et al. Design and Equivalent Modulus of Superelastic Skin Honeycomb Core[J]. China Mechanical Engineering, 2012, 23(6):717-720.
[6]MAHMOOD K, ISMAIL N A, SUHADIS N M. Tethered Aerostat Envelope Design and Applications:a Review[J].AIP Conference Proceedings, 2020, 2226(1):050003.
[7]MANIKANDAN M, PANT R S. Research and Advancements in Hybrid Airships—a Review[J]. Progress in Aerospace Sciences, 2021,127:100741.1-100741.25.
[8]KNAP L, S'WIERCZ A, GRACZYKOWSKI C, et al. Self-deployable Tensegrity Structures for Adaptive Morphing of Helium-filled Aerostats[J]. Archives of Civil and Mechanical Engineering, 2021, 21(4):1-18.
[9]ANOOP S, VELAMATI R K, ORUGANTI V R M. Aerodynamic Characteristics of an Aerostat under Unsteady Wind Gust Conditions[J]. Aerospace Science and Technology, 2021, 113:106684.
[10]施红, 张彤, 高志刚, 等. 新型平流层飞艇定点热特性研究[J]. 机械工程学报, 2018,54(18):154-161.
SHI Hong, ZHANG Tong, GAO Zhigang, et al. Research on Fixed-point Thermal Characteristics of a New Type of Stratospheric Airship[J]. Journal of Mechanical Engineering, 2018,54(18):154-161.
[11]GHERLONE M, CERRACCHIO P, MATTONE M. Shape Sensing Methods:Review and Experimental Comparison on a Wing-shaped Plate[J]. Progress in Aerospace Sciences, 2018, 99:14-26.
[12]HU P, YANG S, ZHENG F, et al. Accurate and Dynamic 3D Shape Measurement with Digital Image Correlation-assisted Phase Shifting[J]. Measurement Science and Technology, 2021, 32(7):075204.
[13]张杰, 张吉旋, 马晓东. 基于数字散斑的大型机翼弹性形变测量技术[J]. 中国测试, 2021, 47(2):149-155.
ZHANG Jie, ZHANG Jixuan, MA Xiaodong. Large-scale Wing Elastic Deformation Measurement Technology Based on Digital Speckle[J]. China Test, 47(2):149-155.
[14]LU Lingling, SONG Hongwei, WANG Yiwei, et al. Deformation Behavior of Non-rigid Airships in Wind Tunnel Tests[J]. Chinese Journal of Aeronautics, 2019, 32(3):611-618.
[15]SCHAEFER P L, BARRIER G, CHAGNON G, et al. Strain Gauges Based 3d Shape Monitoring of Beam Structures Using Finite Width Gauge Model[J]. Experimental Techniques, 2019, 43(5):599-611.
[16]KHAN F, BARRERA D, SALES S, et al. Curvature, Twist and Pose Measurements Using Fiber Bragg Gratings in Multi-core Fiber:a Comparative Study between Helical and Straight Core Fibers[J]. Sensors and Actuators A:Physical, 2021, 317:112442.
[17]FLORIS I, ADAM J M, CALDERN P A, et al. Fiber Optic Shape Sensors:a Comprehensive Review[J]. Optics and Lasers in Engineering, 2021, 139:106508.
[18]LUN T L, WANG K, HO J D, et al. Real-time Surface Shape Sensing for Soft and Flexible Structures Using Fiber Bragg Gratings[J]. IEEE Robotics and Automation Letters, 2019, 4(2):1454-1461.
[19]赵士元, 崔继文, 陈勐勐. 光纤形状传感技术综述[J]. 光学精密工程, 2020, 28(1):10-29.
ZHAO Shiyuan, CUI Jiwen, CHEN Mengmeng. Overview of Optical Fiber Shape Sensing Technology[J]. Optics and Precision Engineering, 2020, 28(1):10-29.
|