[1]雷亚国, 贾峰, 孔德同, 等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报, 2018, 54(5):94-104.
LEI Yaguo, JIA Feng, KONG Detong, et al. Opportunities and Challenges of Machinery Intelligent Fault Diagnosis in Big Data Era[J]. Journal of Mechanical Engineering, 2018, 54(5):94-104.
[2]ZHAO Rui, YAN Ruqiang, CHEN Zhenghua, et al. Deep Learning and Its Applications to Machine Health Monitoring[J]. Mechanical Systems and Signal Processing, 2019, 115:213-237.
[3]LEI Yaguo,YANG Bin, JIANG Xinwei, et al. Applications of Machine Learning to Machine Fault Diagnosis:a Review and Roadmap[J]. Mechanical Systems and Signal Processing, 2020, 138:1-39.
[4]AZADEH A, SABERI M, KAZEM A, et al. A Flexible Algorithm for Fault Diagnosis in a Centrifugal Pump with Corrupted Data and Noise Based on ANN and Support Vector Machine with Hyper-parameters Optimization[J]. Applied Soft Computing, 2013, 13(3):1478-1485.
[5]WANG Dong. K-nearest Neighbors Based Methods for Identification of Different Gear Crack Levels under Different Motor Speeds and Loads:Revisited, Mechanical Systems and Signal Processing[J]. 2016, 70/71:201-208.
[6]CHEN Zhuyun, GRYLLIAS K, LI Weihua. MechanicalFault Diagnosis Using Convolutional Neural Networks and Extreme Learning Machine[J]. Mechanical Systems and Signal Processing, 2019, 133:1-21.
[7]ZHAO Jing, YANG Shaopu, LI Qiang, et al. A New Bearing Fault Diagnosis Method Based on Signal-to-image Mapping and Convolutional Neural Network[J]. Measurement, 2021, 176:1-15.
[8]XIE Jiaqi, DU Guifu, SHEN Changqing, et al. An End-to-end Model Based on Improved Adaptive Deep Belief Network and Its Application to Bearing Fault Diagnosis[J]. IEEE Access, 2018, 6:63584-63596.
[9]赵志宏, 李乐豪, 杨绍普, 等. 一种频域特征提取自编码器及其在故障诊断中的应用研究[J].中国机械工程, 2021, 32(20):2468-2474.
ZHAO Zhihong, LI Lehao, YANG Shaopu, et al. A Frequency Domain Feature Extraction Auto-encoder and Its Applications on Fault Diagnosis[J]. China Mechanical Engineering, 2021, 32(20):2468-2474.
[10]雷亚国, 杨彬, 杜兆钧, 等. 大数据下机械装备故障的深度迁移诊断方法[J]. 机械工程学报, 2019, 55(7):1-8.
LEI Yaguo, YANG Bin, DU Zhaojun, et al. Deep Transfer Diagnosis Method for Machinery in Big Data Era[J]. Journal of Mechanical Engineering, 2019, 55(7):1-8.
[11]LONG Mingshen, CAO Yue, WANG Jianmin, et al. Learning Transferable Features with Deep Adaptation Networks[C]∥International Conference on Machine Learning. Lille, 2015:97-105.
[12]SUN B, SAENKO K. Deep CORAL:Correlation Alignment for Deep Domain Adaptation[C]∥European Conference on Computer Vision. Amsterdam, 2016:443-450.
[13]LONG Mingsheng, ZHU Han, WANG Jianmin, et al. Deep Transfer Learning with Joint Adaptation Networks[C]∥International Conference on Machine Learning. Sydney, 2017:3470-3479.
[14]GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial Training of Neural Networks[J]. Journal of Machine Learning Research, 2016, 17(1):2096-2030.
[15]CHEN Z Y, GRYLLIAS K, LI W H. Intelligent Fault Diagnosis for Rotary Machinery Using Transferable Convolutional Neural Network[J]. IEEE Transactions on Industrial Informatics, 2020, 16(1):339-349.
[16]LI X Q, JIANG H K, WANG R X, et al. Rolling Bearing Fault Diagnosis Using Optimal Ensemble Deep Transfer Network[J]. Knowledge-Based Systems, 2021, 213:1-10.
[17]揭震国,王细洋,龚廷恺. 基于深度学习与子域适配的齿轮故障诊断[J].中国机械工程, 2021, 32(22):2716-2723.
JIE Zhenguo, WANG Xiyang, GONG Tingkai. Gear Fault Diagnosis Based on Deep Learning and Subdomain Adaptation[J]. China Mechanical Engineering, 2021, 32(22):2716-2723.
[18]HAN Te, LIU Chao, YANG Wenguang, et al. ANovel Adversarial Learning Framework in Deep Convolutional Neural Network for Intelligent Diagnosis of Mechanical Faults[J]. Knowledge-Based Systems, 2019, 165:474-487.
[19]王晋东,陈益强. 迁移学习导论[M]. 北京:电子工业出版社,2021:21-28, 99-105.
WANG Jindong, CHEN Yiqiang. Introduction to Transfer Learning[M]. Beijing:Publishing House of Electronics Industry, 2021:21-28, 99-105.
[20]KRIZHEVSKY A, SUTSKEVER I, HINTON G. Imagenet Classification with Deep Convolutional Neural Networks[J]. Communications of the ACM, 2017, 60(6):84-90.
[21]邱锡鹏. 神经网络与深度学习[M]. 北京:机械工业出版社, 2019:113-125.
QIU Xipeng.Neural Networks and Deep Learning[M]. Beijing:China Machine Press, 2019:113-125.
[22]ZHU Ke, WU Jianxin. Residual Attention:a Simple But Effective Method for Multi-label Recognition[C]∥International Conference on Computer Vision. Montreal, 2021:184-193.
[23]SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM:Visual Explanations from Deep Networks via Gradient-based Localization[J]. International Journal of Computer Vision, 2020, 128(2):336-359.
|