China Mechanical Engineering ›› 2023, Vol. 34 ›› Issue (07): 757-769.DOI: 10.3969/j.issn.1004-132X.2023.07.001
Previous Articles Next Articles
WANG Lei1;WU Yuliang1;ZHAO Jiyuan1,3;LU Bingheng1,2
Online:
2023-04-10
Published:
2023-05-04
王磊1;邬宇梁1;赵纪元1,3 ;卢秉恒1,2
通讯作者:
赵纪元(通信作者),男,1969年生,教授。研究方向为数字化检测技术与增材制造。E-mail:jiyuan.zhao@xjtu.edu.cn。
作者简介:
王磊,男,1982年生,副研究员。研究方向为增材制造与智能制造装备。E-mail:wlei292@xjtu.edu.cn。
基金资助:
CLC Number:
WANG Lei, WU Yuliang, ZHAO Jiyuan, LU Bingheng, . Research Progresses of Finishing Technology for Inner Channel of Additive Manufacturing Parts[J]. China Mechanical Engineering, 2023, 34(07): 757-769.
王磊, 邬宇梁, 赵纪元, , 卢秉恒, . 增材制件内流道精整加工技术研究进展[J]. 中国机械工程, 2023, 34(07): 757-769.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2023.07.001
[1]卢秉恒. 增材制造技术——现状与未来[J]. 中国机械工程, 2020, 31(1):19-23. LU Bingheng. Additive Manufacturing:Current Situation and Future[J]. China Mechanical Engineering, 2020, 31(1):19-23. [2]ZHANG C, WANG S, LI J, et al. Additive Manufacturing of Products with Functional Fluid Channels:a Review[J]. Additive Manufacturing, 2020, 36:101490. [3]高航, 彭灿, 王宣平. 航空增材制造复杂结构件表面光整加工技术研究及进展[J]. 航空制造技术, 2019, 62(9):14-22. GAO Hang, PENG Can, WANG Xuanping. Research Progress on Surface Finishing Technology of Aeronautical Complex Structural Parts Manufactured by Additive Manufacturing[J]. Aeronautical Manufacturing Technology, 2019, 62(9):14-22. [4]雷力明, 侯慧鹏, 何艳丽, 等. 金属增材制造技术在民用航空领域的应用与挑战[J]. 航空制造技术, 2019(21):22-30. LEI Liming, HOU Huipeng, HE Yanli, et al. Application and Challenges of Metal Additive Manufacturing in Civil Aviation[J]. Aeronautical Manufacturing Technology,2019(21):22-30. [5]赵建社, 汪文峰, 吕焱明, 等. 难加工材料闭式整体构件精密电火花加工技术研究[J]. 航空制造技术, 2017(3):22-27. ZHAO Jianshe, WANG Wenfeng, LYU Yanming, et al. Research on Precision EDM Technology for Closed Integral Component of Difficult-to-cut Material[J]. Aeronautical Manufacturing Technology, 2017(3):22-27. [6]武利生, 李元宗. 磨料流加工研究进展[J]. 金刚石与磨料磨具工程, 2005(1):69-74. WU Lisheng, LI Yuanzong. Progress of Abrasive Flow Machining[J]. Diamond & Abrasives Engineering, 2005(1):69-74. [7]詹平海. 磨粒流加工技术的特点及应用[J]. 金属加工:冷加工, 2009(6):30-32. ZHAN Pinghai. Characteristics and Application of Abrasive Flow Machining Technology[J]. Metal Working(Metal Cutting), 2009(6):30-32. [8]WILLIAMS R E, MELTON V L. Abrasive Flow Finishing of Stereolithography Prototypes[J]. Rapid Prototyping Journal, 1998, 4(2):56-67. [9]FURUMOTO T, UEDA T, AMINO T, et al. Finishing Performance of Cooling Channel with Face Protuberance inside the Molding Die[J]. Journal of Materials Processing Technology, 2012, 212(10):2154-2160. [10]周顺新. 磨粒流加工技术及其在压缩机叶轮上的应用[J]. 现代制造技术与装备, 2017(2):155-156. ZHOU Shunxin. Abrasive Flow Processing Technology and Its Application in Compressor[J]. Modern Manufacturing Technology and Equipment,2017(2):155-156. [11]ZHANG Y, ZOU Y. Study of Corrective Abrasive Finishing for Plane Surfaces Using Magnetic Abrasive Finishing Processes[J]. Nanotechnology and Precision Engineering, 2021, 4(3):5-15. [12]XIE H, ZOU Y, DONG C, et al. Study on the Magnetic Abrasive Finishing Process Using Alternating Magnetic Field:Investigation of Mechanism and Applied to Aluminum Alloy Plate[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102:1509-1520. [13]邓超, 韩冰, 陈燕. 磁研磨法对钛合金弯管内表面的抛光研究[J]. 航空制造技术, 2015, 472(3):61-63. DENG Chao, HAN Bing, CHEN Yan. Study of Inner Surface Polishing of Titanium Alloy Elbow Pipe by Magnetic Abrasive Finishing[J]. Aeronautical Manufacturing Technology, 2015, 472(3):61-63. [14]杨海吉, 张晓君, 陈燕, 等. 磁力研磨精密抛光4×150 mm TC4管内表面的试验研究[J]. 表面技术, 2017, 46(12):259-264. YANG Haiji, ZHANG Xiaojun, CHEN Yan, et al. Polishing of Inner Surface of 4×150 mm TC4 Tube by Magnetic Abrasive Finishing[J]. Surface Technology,2017, 46(12):259-264. [15]JHA S, JAIN V K. Design and Development of the Magnetorheological Abrasive Flow Finishing (MRAFF) Process[J]. International Journal of Machine Tools & Manufacture, 2004, 44(10):1019-1029. [16]JHA S, JAIN V K. Nanofinishing of Silicon Nitride Workpieces Using Magnetorheological Abrasive Flow Finishing[J]. International Journal of Nanomanufacturing, 2006, 1:17-25. [17]JHA S, JAIN V K. Modeling and Simulation of Surface Roughness in Magnetorheological Abrasive Flow Finishing Process[J]. Wear, 2006, 261(7):856-866. [18]JONES A R, HULL J B. Ultrasonic Flow Polishing[J]. Ultrasonics, 1998, 36(1/5):97-101. [19]LI H, REN K, YIN Z, et al. Review of Ultrasonic Vibration-assisted Abrasive Flow Polishing Technology[J]. Journal of Mechanical Engineering, 2021, 57(9):233-253. [20]MULIK R S, PANDEY P M. Experimental Investigations and Modeling of Finishing Force and Torque in Ultrasonic Assisted Magnetic Abrasive Finishing[J]. Journal of Manufacturing Science and Engineering, 2012, 134:051008. [21]VENKATESH G, SHARMA A K, KUMAR P. On Ultrasonic Assisted Abrasive Flow Finishing of Bevel Gears[J]. International Journal of Machine Tools & Manufacture, 2015, 89:29-38. [22]YU T, GUO X, WANG Z, et al. Effects of the Ultrasonic Vibration Field on Polishing Process of Nickel-based Alloy Inconel718[J]. Journal of Materials Processing Technology, 2019, 273:116228. [23]FARWAHA H S, DEEPAK D, BRAR G S. Design and Performance of Ultrasonic Assisted Magnetic Abrasive Finishing Combined with Electrolytic Process Set Up for Machining and Finishing of 316L Stainless Steel[J]. Materials Today:Proceedings, 2020, 33(3):1626-1631. [24]谭悦, 陈燕. 电解复合磁力研磨GH4169管内表面的光整研究[J]. 电镀与精饰, 2020, 42(1):27-32. TAN Yue, CHEN Yan. Surface Finishing of GH4169 Tube by Electrolytic Composite Magnetic Grinding[J]. Plating & Finishing,2020, 42(1):27-32. [25]DABROWSKI L, MARCINIAK M, WIECZOREK W, et al. Advancement of Abrasive Flow Machining Using an Anodic Solution[J]. Journal of New Materials for Electrochemical Systems, 2006, 9(4):439-445. [26]BRAR B S, WALIA R S, SINGH V P. Electrochemical-aided Abrasive Flow Machining (ECA2 FM) Process:a Hybrid Machining Process[J]. International Journal of Advanced Manufacturing Technology, 2015, 79:329-342. [27]刘文浩, 陈燕, 王杰, 等. SLM成型零件型腔内表面电解辅助磁粒研磨加工研究[J]. 中国表面工程, 2021, 34(3):100-109. LIU Wenhao, CHEN Yan, WANG Jie, et al. Study on Electrolysis Assisted Magnetic Abrasive Finishing of SLM Parts Cavity Surface[J]. China Surface Engineering, 2021,34(3):100-109. [28]WALIA R S, SHAN H S, KUMAR P. Abrasive Flow Machining with Additional Centrifugal Force Applied to the Media[J]. Machining Science and Technology, 2006, 10(3):341-354. [29]SANKAR M R, JAIN V K, RAMKUMAR J. Experimental Investigations into Rotating Workpiece Abrasive Flow Finishing[J]. Wear, 2009, 267(1):43-51. [30]MALI H S, MANNA A. An Experimental Investigation during Finishing of Particulate Reinforced Al/10 wt% SiCp-MMC on Developed AFF Setup[J]. International Journal of Manufacturing Technology and Management, 2014, 28(1):114-131. [31]刘薇娜, 孙冉, 张雪瑶, 等. 复杂曲面软性磨粒流抛光可行性研究[J]. 机械工程师, 2017(4):36-38. LIU Weina, SUN Ran, ZHANG Xueyao, et al. Feasibility Study on Soft Abrasive Flow Polishing of Complex Curved Surface[J]. Mechanical Engineer,2017(4):36-38. [32]GROVER V, SINGH A K. A Novel Magnetorheological Honing Process for Nano-finishing of Variable Cylindrical Internal Surfaces[J]. Materials and Manufacturing Processes, 2017, 32(5):573-580. [33]SAMBHARIA J, MALI H S. Characterisation and Performance Evaluation of Developed Alternative Polymer Abrasive Gels for Abrasive Flow Finishing Process[J]. International Journal of Precision Technology, 2015, 5(3/4):185-200. [34]SANKAR M R, JAIN V K, RAMKUMAR J, et al. Rheological Characterization of Styrene-butadiene Based Medium and Its Finishing Performance Using Rotational Abrasive Flow Finishing Process[J]. International Journal of Machine Tools & Manufacture, 2011, 51(12):947-957. [35]SINGH P, SINGH L, SINGH S. Analyzing Process Parameters for Finishing of Small Holes Using Magnetically Assisted Abrasive Flow Machining Process[J]. Journal of Bio- and Tribo-corrosion, 2019, 6:17. [36]UHLMANN E, SCHMIEDEL C, WENDLER J. CFD Simulation of the Abrasive Flow Machining Process[J]. Procedia CIRP, 2015, 31:209-214. [37]DUVAL-CHANEAC M S, HAN S, CLAUDIN C, et al. Experimental Study on Finishing of Internal Laser Melting (SLM) Surface with Abrasive Flow Machining (AFM)[J]. Precision Engineering, 2018,54:1-6. [38]HAN S, SALVATORE F, RECH J, et al. Abrasive Flow Machining (AFM) Finishing of Conformal Cooling Channels Created by Selective Laser Melting(SLM)[J]. Precision Engineering, 2020, 64:20-33. [39]郭贤烙, 肖鑫, 易翔, 等. 铜及铜合金化学抛光及钝化的研究[J]. 表面技术, 2001, 30(2):35-39. GUO Xianluo, XIAO Xin, YI Xiang, et al. Study on Chemical Polishing and Passivation of Copper and Copper Alloy[J]. Surface Technology,2001, 30(2):35-39. [40]杜炳志, 漆红兰. 电化学抛光技术新进展[J]. 表面技术, 2007. DU Bingzhi, QI Honglan. Development of Electrochemical Polishing Technology[J]. Surface Technology,2007. [41]LYCZKOWSKA E, SZYMCZYK P, DYBALA B, et al. Chemical Polishing of Scaffolds Made of Ti-6Al-7Nb Alloy by Additive Manufacturing[J]. Archives of Civil and Mechanical Engineering, 2014, 14(4):586-594. [42]HABIBZADEH S, LING L, SHUM-TIM D, et al. Electrochemical Polishing as a 316L Stainless Steel Surface Treatment Method:towards the Improvement of Biocompatibility[J]. Corrosion Science, 2014, 87:89-100. [43]HUANG C A, CHEN Y C, CHANG J H. The Electrochemical Polishing Behavior of the Inconel 718 Alloy in Perchloric-acetic Mixed Acids[J]. Corrosion Science, 2008, 50(2):480-489. [44]PYKA G, BURAKOWSKI A, KERCKHOFS G, et al. Surface Modification of Ti6Al4V Open Porous Structures Produced by Additive Manufacturing[J]. Advanced Engineering Materials, 2012, 14(6):363-370. [45]SIMKA W, KACZMAREK M, BARON-WIECHE A, et al. Electropolishing and Passivation of NiTi Shape Memory Alloy[J]. Electrochimica Acta, 2010, 55(7):2437-2441. [46]GOMEZ-GALLEGOS A A, MILL F, MOUNT A R. Surface Finish Control by Electrochemical Polishing in Stainless Steel 316 Pipes[J]. Journal of Manufacturing Processes, 2016, 23:83-89. [47]干为民, 朱烨, 王祥志, 等. 电解复合加工研究进展[J]. 常州工学院学报, 2018, 31(1):25-31. GAN Weimin, ZHU Ye, WANG Xiangzhi, et al. Electro-polishing of 316L Stainless Steel Bipolar Plate[J]. Journal of Changzhou Institute of Technology, 2018, 31(1):25-31. [48]HE X L, WANG Y K, WANG Z L, et al. Micro-hole Drilled by EDM-ECM Combined Processing[J]. Key Engineering Materials, 2013,562/565:52-56. [49]刘辰. 三元流闭式叶轮组合电加工技术研究[D]. 南京:南京航空航天大学, 2010. LIU Chen. Research on Combined Electrical Machining of the 3D-flow Closed Impeller[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2010. [50]王军, 赵建社, 刘辰, 等. 闭式整体叶轮叶间流道电解加工阴极设计[J]. 中国机械工程, 2010, 21(12):1414-1417. WANG Jun, ZHAO Jianshe, LIU Chen, et al. Cathode Design in Electrochemical Machining of Cavities among Blades of Closed Integral Impeller[J]. China Mechanical Engineering,2010,21(12):1414-1417. [51]唐霖, 范植坚, 朱秋林. 闭式叶轮电解-电火花组合加工技术研究[C]∥第16届全国特种加工学术会议论文集(上).厦门,2015:674-680. TANG Lin, FAN Zhijian, ZHU Qiulin. Research on Electrolysis-electric Discharge Combined Machining Technology of Closed Impeller[C]∥Proceedings of the 16th National Special Processing Conference (Part 1). Xiamen, 2015:674-680. [52]LIU J W, YUE T M, GUO Z N. Grinding-aided Electrochemical Discharge Machining of Particulate Reinforced Metal Matrix Composites[J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(9/12):2349-2357. [53]干为民, 王祥志, 徐波, 等. 数控电解机械复合加工技术研究[C]∥第16届全国特种加工学术会议论文集(上). 厦门,2015:652-656. GAN Weimin, WANG Xiangzhi, XU Bo, et al. Research on CNC Electrolytic Mechanical Compound Processing Technology[C]∥Proceedings of the 16th National Special Processing Conference (Part 1). Xiamen, 2015:652-656. [54]ZHAO C, QU N, TANG X. Electrochemical Mechanical Polishing of Internal Holes Created by Selective Laser Melting[J]. Journal of Manufacturing Processes, 2021, 64:1544-1562. [55]赵鑫. 3D打印钛合金内流道复合抛光方法及机理研究[D]. 西安:西安理工大学, 2021. ZHAO Xin. Study on Compound Polishing Method and Mechanism of 3D Printing Titanium Alloy Inner Channel[D]. Xian:Shaanxi University of Technology, 2021. [56]HOCHENG H, KUO K L. Fundamental Study of Ultrasonic Polishing of Mold Steel[J]. International Journal of Machine Tools & Manufacture, 2002, 42(1):7-13. [57]ZHANG C G, ZHANG Y, ZHANG F H. Mechanism of Ultrasonic-pulse Electrochemical Compound Machining Based on Particles[J]. Journal of Central South University, 2014, 21(1):151-159. [58]SINGH H, JAIN P K. Influence of Ultrasonic Vibrations on Process Performance of Electrochemical Honing[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87:1057-1066. [59]COTEA M, SLTINEANU L, DODUN O, et al. Electrochemical Discharge Machining of Small Diameter Holes[J]. International Journal of Material Forming, 2008, 1:1327-1330. [60]CHENG C P, WU K L, MAI C C, et al. Magnetic Field-assisted Electrochemical Discharge Machining[J]. Journal of Micromechanics and Microengineering, 2010, 20(7):075019. [61]姚庆. 异型零件电解质—等离子抛光工艺的研究与应用[D].秦皇岛:燕山大学, 2018. YAO Qing. Research and Application of Electrolytic Plasma Polishing Technology for Profiled Parts[D].Qinhuangdao:Yanshan University, 2018. [62]王季. 金属表面电解质等离子抛光及其工艺的研究[D]. 哈尔滨:哈尔滨工业大学, 2013. WANG Ji. Research on Metal Surface Electrolysis and Plasma Polishing and Process[D]. Harbin:Harbin Institute of Technology, 2013. [63]王季, 索来春, 关丽丽, 等. 电解质等离子抛光表面粗糙度随时间变化规律[J]. 哈尔滨工程大学学报, 2013, 34(2):227-232. WANG Ji, SUO Laichun, GUAN Lili. Regularity of Surface Roughness with Polishing Time in Electrolysis and Plasma Polishing[J]. Journal of Harbin Engineering University,2013,34(2):227-232. [64]WANG J, SUO L, GUAN L, et al. Analytical Study on Mechanism of Electrolysis and Plasma Polishing[C]∥Proceedings of the 3rd International Conference on Manufacturing Science and Engineering (ICMSE 2012). Xiamen, 2012:350-353. [65]WANG J, SUO L, FU Y, et al. Study on Material Removal Rate of Electrolysis and Plasma Polishing[C]∥IEEE International Conference on Information and Automation (ICIA). Shenyang, 2012:917-922. [66]VANA D. Surface Properties of the Stainless Steel X10 CrNi 18/10 after Aplication of Plasma Polishing in Electrolyte[J].International Journal of Modern Engineering Research, 2013, 3(2):788-792. [67]段海栋, 孙桓五, 纪刚强, 等. 电解质等离子体抛光316LVM表面形貌及电化学特性[J]. 表面技术, 2021, 50(8):396-403. DUAN Haidong, SUN Huanwu, JI Gangqiang, et al. Surface Morphology and Electrochemical Characteristics of 316LVM Polished by Electrolytic Plasma[J]. Surface Technology, 2021, 50(8):396-403. [68]BELKIN P N, SILKIN S A, DYAKOV I G, et al. Influence of Plasma Electrolytic Polishing Conditions on Surface Roughness of Steel[J]. Surface Engineering and Applied Electrochemistry, 2020, 56(1):55-62. [70]DURADJI V N, KAPUTKIN D E, DURADJI A Y. Aluminum Treatment in the Electrolytic Plasma during the Anodic Process[J]. Journal of Engineering Science and Technology Review, 2017, 10(3):81-84. [71]隗倩. 基于小型电解等离子抛光机的铝合金配方优化及应用研究[D]. 哈尔滨:哈尔滨工业大学, 2015. WEI Qian. Research on Optimization and Application of Aluminium Formula Based on The Small Electrolysis Plasma Polishing Machine[D]. Harbin:Harbin Institute of Technology,2015. [72]NESTLER K, BOTTGER-HILLER F, ADAMITZKI W, et al. Plasma Electrolytic Polishing:an Overview of Applied Technologies and Current Challenges to Extend the Polishable Material Range[J]. Procedia CIRP, 2016, 42:503-507. [73]GUPTA P, TENHUNDFELD G, DAIGLE E O, et al. Electrolytic Plasma Technology:Science and Engineering:an Overview[J]. Surface & Coatings Technology, 2007, 201(21):8746-8760. [74]SMYSLOVA M K, TAMINDAROV D R, PLOTNIKOV N V, et al. Surface Electrolytic-plasma Polishing of Ti-6Al-4V Alloy with Ultrafine-grained Structure Produced by Severe Plastic Deformation[J]. IOP Conference Series:Materials Science and Engineering, 2018, 461:012079. [77]ABLYAZ T R, MURATOV K R, RADKEVICH M M, et al. Electrolytic Plasma Surface Polishing of Complex Components Produced by Selective Laser Melting[J]. Russian Engineering Research, 2018, 38(6):491-492. [78]SEO B, PARK H K, KIM H G, et al. Corrosion Behavior of Additive Manufactured CoCr Parts Polished with Plasma Electrolytic Polishing[J]. Surface & Coatings Technology, 2021, 406:126640. [79]STEPPUTAT V N, ZEIDLER H, SAFRANCHIK D, et al. Investigation of Post-processing of Additively Manufactured Nitinol Smart Springs with Plasma-electrolytic Polishing[J]. Materials, 2021, 14(15):4093. [80]KASHAPOV L N, KASHAPOV N F, KASHAPOV R N, et al. Plasma Electrolytic Treatment of Products after Selective Laser Melting[J]. Journal of Physics:Conference Series, 2016, 669:012029. [81]王季, 索来春, 付宜利. 电解质等离子抛光液中硫酸铵含量的检测方法[J]. 材料科学与工艺, 2014, 22(2):30-35. WANG Ji, SUO Laichun, FU Yili. Detecting the Mass Fraction of Ammonium Sulfate in Polishing Solution in Electrolysis and Plasma Polishing[J]. Materials Science and Technology,2014, 22(2):30-35. [82]DANILOV I, HACKERT-OSCHATZCHEN M, ZINECKER M, et al. Process Understanding of Plasma Electrolytic Polishing through Multiphysics Simulation and Inline Metrology[J]. Micromachines, 2019, 10(3):214. [83]ZAKHAROV S V, KOROTKIKH M T. Electrolyte-plasma Polishing Ionization Model[M]∥EVGRAFOV A N. Advances in Mechanical Engineering. Saint Petersburg:Springer Cham, 2020:193-208. [84]RADKEVICH M M, KUZMICHEV I S. Technological Schemes for Elongated Foramen Internal Surface Finishing by Forced Electrolytic-plasma Polishing[M]∥EVGRAFOV A N. Advances in Mechanical Engineering. Saint Petersburg:Springer Cham, 2020:102-111. [85]CORNELSEN M, DEUTSCH C, SEITZ H. Electrolytic Plasma Polishing of Pipe Inner Surfaces[J]. Metals, 2017, 8(1):12. [86]NARAYANAN T, KIM J, PARK H W. High Performance Corrosion and Wear Resistant Ti-6Al-4V Alloy by the Hybrid Treatment Method[J]. Applied Surface Science, 2020, 504:144388. [87]HUANG Y, WANG C Y, DING F, et al. Principle, Process, and Application of Metal Plasma Electrolytic Polishing:a Review[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114:1893-1912. |
[1] | ZHANG Zhen, GUO Ce, HU Caiji, ZHENG Wei. Research on Self-repairing Structure Design and Repair Performance Based on Additive Manufacturing Technology [J]. China Mechanical Engineering, 2024, 35(01): 144-151. |
[2] | XUE Kai, GUO Runlan, HUANG Huiyang, HUANG Hua. Structural Optimization Method of Additive Manufacturing Model Based on Point Cloud Data [J]. China Mechanical Engineering, 2023, 34(20): 2482-2488. |
[3] | KE Qingdi, LUO Junyou, JIANG Shouzhi, HUANG Haihong, . Construction of Ultrasonic-Stress Inversion Model Based on Distribution States of Coating Materials [J]. China Mechanical Engineering, 2023, 34(18): 2230-2237. |
[4] | LIU Yingjie, HU Qiang, ZHAO Xinming, ZHANG Shaoming, HUANG Shuai, WANG Yonghui. Research on Topology Optimization and Additive Manufacturing of Automotive Engine Connection Brackets [J]. China Mechanical Engineering, 2023, 34(18): 2238-2267. |
[5] | FANG Xuewei, JIANG Xiao, WANG Zhe, WU Xiaokang, HUANG Ke. Forming Process Optimization of Wire and Arc Additive Manufactured High-strength Steel ER120S-G [J]. China Mechanical Engineering, 2023, 34(02): 218-225. |
[6] | HAN Guangchao, YANG Jiakai, YE Zejiu, XU Linhong, ZHANG Haiou, YANG Haitao. Research on Longitudinal-Torsion Compound Ultrasonic Vibration Dry Milling Characteristics for AlMgSc Alloys Formed by Arc Micro-casting and Forging Additive Manufacturing [J]. China Mechanical Engineering, 2022, 33(24): 2971-2979,2989. |
[7] | MENG Liang, ZHONG Mingzhe, LI Wenbiao, XIA Liang, GAO Tong, ZHU Jihong, ZHANG Weihong, . Topology Optimization Design of Aero-engine External System Brackets for Additive Manufacturing [J]. China Mechanical Engineering, 2022, 33(23): 2822-2832. |
[8] | ZOU Wuyou, DU Chun, AI Jianping, SHAN Bin. Optimization Design of TiO2 Porous Ceramic Structures for Catalyst Carrier Applications [J]. China Mechanical Engineering, 2022, 33(23): 2833-2843. |
[9] | JIAO Chen, CHAO Long, ZHU Lei, SHEN Lida, LIANG Huixin, DAI Ning, WANG Changjiang, SUN Jun. Design and Manufacture Method of Bionic Porous Structures for Orthopedic Implants [J]. China Mechanical Engineering, 2022, 33(23): 2844-2850. |
[10] | HE Zhicheng, YANG Dingding, JIANG Chao, WU Yi, JIANG Hexin. Strength-constrainted Topology Optimization Based on Additive Manufacturing Anisotropy [J]. China Mechanical Engineering, 2022, 33(19): 2372-2380,2393. |
[11] | XIONG Xiaochen , QIN Xunpeng , HUA Lin , HU Zeqi , JI Feilong , . Research Status and Development of Hybrid Additive Manufacturing Technology [J]. China Mechanical Engineering, 2022, 33(17): 2087-2097. |
[12] | ZHONG Yang, QIN Xiaobo, ZHENG Zhizhen, LI Jianjun, WANG Cheng. Study on Microstructure and Mechanics Properties of 2.25Cr-1Mo-0.25V Steel Fabricated by CMT Wire ARC Additive Manufacturing for Petrochemical Vessels [J]. China Mechanical Engineering, 2022, 33(10): 1251-1259. |
[13] | TIAN Xuexue, ZHAO Jiyuan, LU Bingheng, WANG Lei. Laser Ultrasonic Quantitative Detection of Buried Depth for Internal Defects in Additive Manufacturing Parts#br# [J]. China Mechanical Engineering, 2022, 33(08): 952-959. |
[14] | HAN Qinglin, GAO Jia, LI Xinlei, ZHANG Guangjun. Constituent and Property Adjustment of Deposited Metals by Dissimilar Auxiliary Wire Feed Gas Metal Arc-based Additive Manufacturing [J]. China Mechanical Engineering, 2022, 33(07): 858-863. |
[15] | SUN Maoyin, WU Jian, WU Zehong, . Effects of STL Data Processing on Surface Stripes of Laser Sintered Parts [J]. China Mechanical Engineering, 2021, 32(09): 1108-1113. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||