[1]夏城城.水下滑翔机系统设计与优化[D].杭州:浙江大学, 2018.
XIA Chengcheng. Design and Optimization of Underwater Glider System[D]. Hangzhou:Zhejiang University, 2018.
[2]李沛伦.水下滑翔机路径规划研究[D].上海:上海交通大学,2019.
LI Peilun. Research on Path Planning of Underwater Glider[D]. Shanghai:Shanghai Jiaotong University, 2019.
[3]牛作硕,宫金良,张彦斐. 基于多路线追踪的机器人局部路径规划与实验[J]. 计算机应用与软件,2020, 39(1):60-64.
NIU Zuoshuo, GONG Jinliang, ZHANG Yanfei. Robot Local Path Planning and Experiment Based on Multi Route Tracking[J]. Computer Applications and Software, 2020, 39(1):60-64.
[4]LI Ben, XU Guohua, XIA Yingkai, et al. Composite Curve Path Following an Underactuated AUV[J].Mathematical Problems in Engineering,2021,2021(16):6624893.1- 6624893.18.
[5]YAO Xuliang, WANG Xiaowei, WANG Feng, et al. Path Following Based on Waypoints and Real-time Obstacle Avoidance Control of an Autonomous Underwater Vehicle[J]. Sensors, 2020, 20(3):795.
[6]田宇, 张艾群, 李伟. 欠驱动自主水下机器人三维路径跟踪控制[C]∥第30届中国控制会议. 烟台,2011:3456-3461.
TIAN Yu, ZHANG Aiqun, LI Wei. Three Dimensional Path Tracking Control of Underactuated Autonomous Underwater Vehicle[C]∥30th Chinese Control Conference. Yantai, 2011:3456-3461.
[7]王宏建, 陈子印, 贾鹤鸣,等. 基于滤波反步法的欠驱动AUV三维路径跟踪控制[J]. 自动化学报,2015, 41(3):631-645.
WANG Hongjian, CHEN Ziyin, JIA Heming, et al. Three Dimensional Path Tracking Control of Underactuated AUV Based on Filter Backstepping Method[J]. Journal of Automation,2015, 41(3):631-645.
[8]ISERN-GONZLEZ J, HERNANDEZ-SOSA D, FERNANDEZ-PERDOMO E, et al. Application of Iterative-optimization Techniques to Solve Hold Track Problem in Glider Navigation[C]∥OCEANS 2011 MTS/IEEE.Waikoloa,2011:12470493.
[9]HUANG Yan, YU Jiancheng, ZHAO Wentao, et al. A Practical Path Tracking Method for Autonomous Underwater Gilders Using Iterative Algorithm[C]∥OCEANS 2015 - MTS/IEEE. Washington D C,2015:15798877.
[10]HUO Mengxue, LIU Shijie, ZHANG Fumin, et al. A Combined Path Planning and Path Following Method for Underwater Glider Navigation in a Strong, Dynamic Flow Field [C]∥OCEANS-MTS/IEEE Kobe Techno-Oceans Conference. Kobe,2018:697-704.
[11]HUO Mengxue, LIU Shijie, ZHANG Fumin, et al. Path Tracking Error Analysis for Underwater Glider Navigation in a Spatially and Temporally Varying Flow Field[C]∥OCEANS 2018 MTS/IEEE. Charleston, 2018:18374498.
[12]潘昕, 冯国利, 侯新国. 基于分层学习的AUV路径跟踪技术研究[J]. 海军工程大学学报,2021, 33(3):106-112.
PAN Xin, FENG Guoli, HOU Xinguo. Research on AUV Path Tracking Technology Based on Hierarchical Learning[J]. Journal of Naval Engineering University, 2021, 33(3):106-112.
[13]李泽宇, 刘卫东, 李乐, 等. 基于FBR网络Q学习的AUV路径跟踪控制方法[J]. 西北工业大学学报,2021, 39(3):477-483.
LI Zeyu, LIU Weidong, LI Le, et al. AUV Path Tracking Control Method Based on FBR Network Q-learning[J]. Journal of Northwest University of Technology,2021, 39(3):477-483.
[14]邵俊恺, 杨钰, 张文明,等. 无人驾驶铰接式车辆强化学习路径跟踪控制算法[J]. 农业机械学报,2017, 48(3):376-382.
SHAO Junkai, YANG Yu, ZHANG Wenming, et al. Reinforcement Learning Path Tracking Control Algorithm for Unmanned Articulated Vehicle[J]. Journal of Agricultural Machinery,2017, 48(3):376-382.
[15]ZHOU Yaojian, YU Jiancheng, WANG Xiaohui. Time Series Prediction Methods for Depth-averaged Current Velocities of Underwater Gliders[J]. IEEE Access, 2017, 5:5773-5784.
[16]曹慧, 秦江涛. 基于ARIMA-BP组合模型的货运量预测研究[J].软件导刊,2022, 21(2):32-36.
CAO Hui, QIN Jiangtao. Research on Freight Volume Prediction Based on ARIMA-BP Combination Model[J]. Software Guide,2022, 21(2):32-36.
[17]王源昊. 基于ARIMA模型和LSTM神经网络的全球气温预测分析[J]. 科学技术创新,2021, 35:166-170.
WANG Yuanhao. The Software Guides the Prediction and Analysis of Global Temperature Based on ARIMA Model and LSTM Neural Network[J]. Scientific and Technological Innovation,2021, 35:166-170.
[18]张忠林, 张艳. 改进FA优化LSTM的时序预测模型[J]. 计算机工程与应用,2022,58(11):125-132.
ZHANG Zhonglin, ZHANG Yan. Improved FA Optimized LSTM Time Series Prediction Model[J]. Computer Engineering and Application,2022,58(11):125-132.
[19]刘炽.基于LSTM和TNC的室内定位系统研究与实现[D].济南:山东大学,2019.
LIU Chi. Research and Implementation of Indoor Positioning System Based on LSTM and TNC[D]. Jinnan:Shandong University,2019.
[20]邵必林, 史洋博, 赵煜. 融合注意力机制与LSTM的建筑能耗预测模型研究[J]. 软件导航,2021,20(10):61-67.
SHAO Bilin, SHI Yangbo, ZHAO Yu. Research on Building Energy Consumption Prediction Model Integrating Attention Mechanism and LSTM[J]. Software Navigation,2021, 20(10):61-67.
[21]李亚峰, 王洪波, 李晨,等. 融合注意力机制的LSTM期货投资策略[J].计算机系统应用,2021,30(8):22-30.
LI Yafeng, WANG Hongbo, LI Chen, et al. LSTM Futures Investment Strategy Integrating Attention Mechanism[J]. Computer System Application,2021, 30(8):22-30.
[22]龚飘怡, 罗云峰, 窦帆.基于Attention-BiLSTM-LSTM神经网络的短期电力负荷预测方法[J].计算机应用, 2021,41(增1):81-86.
GONG Piaoyi, LUO Yunfeng, DOU Fan. Short Term Power Load Forecasting Method Based on Attention BiLSTM LSTM Neural Network[J]. Computer Application, 2021,41(S1):81-86.
[23]于涛, 张文煊. 基于注意力机制的 LSTM 液体管道非稳态工况检测[J]. 油气与新能源,2021, 33(4):58-63.
YU Tao, ZHANG Wenxuan. Detection of Unsteady State Conditions of LSTM Liquid Pipeline Based on Attention Mechanism[J]. Oil and Gas and New Energy, 2021, 33(4):58-63.
[24]刘翀, 杜军平. 一种基于深度LSTM和注意力机制的金融数据预测方法[J]. 计算机科学,2020, 47(12):125-130.
LIU Chong, DU Junping. A Financial Data Prediction Method Based on Depth LSTM and Attention Mechanism[J]. Computer Science,2020,47(12):125-130.
[25]桑宏强, 于佩元, 孙秀军. 基于航向补偿的水下滑翔机路径跟踪控制方法[J].水下无人系统学报,2019, 28(5):71-77.
SANG Hongqiang, YU Peiyuan, SUN Xiujun. Path Tracking Control Method of Underwater Glider Based on Heading Compensation[J]. Journal of Underwater Unmanned Systems,2019, 28(5):71-77.
[26]李永成, 马峥, 王小庆.水下滑翔机高效滑翔水动力性能研究[J].中国造船,2020, 61 (4):57-64.
LI Yongcheng, MA Zheng, WANG Xiaoqing. Study on Hydrodynamic Performance of Efficient Glide of Underwater Glider[J]. China Shipbuilding,2020, 61(4):57-64.
[27]方尔正, 周子凌, 桂晨阳. 水下滑翔机原理与应用[J]. 国防科技工业,2020(8):66-68.
FANG Erzheng, ZHOU Ziling, GUI Chenyang. Principle and Application of Underwater Glider[J]. National Defense Science and Technology Industry,2020(8):66-68.
[28]陈奕煿, 张润锋, 杨绍琼. 基于参数自整定PID的水下滑翔机航向控制方法[J].重庆大学学报,2022,45(8):26-33.
CHENG Yibo, ZHANG Runfeng, YANG Shaoqiong, et al. Course Control Method of Underwater Glider Based on Parameter Self-tuning PID[J]. Journal of Chongqing University,2022,45(8):26-33.
[29]QI Xuwei, LUO Yadan, WU Guoyuan, et al. Deep Reinforcement Learning Enabled Self-learning Control for Energy Effcient Driving[J]. Transportation Research Part C,2019, 99:67-81.
[30]LI Junxiang, YAO Liang, XU Xin, et al. Deep Reinforcement Learning for Pedestrian Collision Avoidance and Human-machine Cooperative Driving[J]. Information Science,2020, 532:110-124.
|