[1]郭景华, 李克强, 罗禹贡. 智能车辆运动控制研究综述[J]. 汽车安全与节能学报, 2016, 7(2):151-159.
GUO Jinghua, LI Keqiang, LUO Yugong. Review on the Research of Motion Control for Intelligent Vehicles[J]. Journal of Automotive Safety and Energy, 2016, 7(2):151-159.
[2]GUO H, YIN Z, CAO D, et al. A Review of Estimation for Vehicle Tire-road Interactions toward Automated Driving[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2018, 49(1):14-30.
[3]刘莉, 陶亮, 孙小明, 等.基于ABAQUS的测力车轮有限元建模与试验[J]. 农业机械学报,2020, 51(5):387-394.
LIU Li, TAO Liang, SUN Xiaoming, et al. Finite Element Modeling and Testing for Force-measuring Wheel Based on ABAQUS[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(5):387-394.
[4]STEPHANT J, CHARARA A, MEIZEL D . Virtual Sensor:Application to Vehicle Sideslip Angle and Transversal Forces[J]. IEEE Transactions on Industrial Electronics, 2004, 51(2):278-289.
[5]王秋伟, 赵又群, 张陈曦. 等. 一种基于神经网络的轮胎力在线估计方法:CN202010597248.6[P]. 2020-09-25.
WANG Qiuwei, ZHAO Youquan, ZHANG Chenxi, etal. An Online Tire Force Estimation Method Based on Neural Network:CN202010597248.6[P]. 2020-09-25.
[6]杨斯琦. 车辆轮胎力及车速估计非线性观测器方法研究[D]. 长春:吉林大学,2015.
YANG Siqi. Study on Nonlinear Observer Method for Vehicle Tire Force and Velocity Estimation[D]. Changchun:Jilin University, 2015.
[7]LEE H, TAHERI S. Intelligent Tires? A Review of Tire Characterization Literature[J]. IEEE Intelligent Transportation Systems Magazine, 2017, 9(2):114-135.
[8]BRAGHIN F, BRUSAROSCO M, CHELI F, et al. Measurement of Contact Forces and Patch Features by Means of Accelerometers Fixed Inside the Tire to Improve Future Car Active Control[J]. Vehicle System Dynamics, 2006, 44(S1):3-13.
[9]XU N, ASKARI H, HUANG Y, et al. Tire Force Estimation in Intelligent Tires Using Machine Learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2020,23(4) :3565-3574.
[10]CHELI F, LEO E, SABBIONI S M, et al. On the Impact of Smart Tire on Existing ABS/EBD Control Systems[J]. Vehicle System Dynamics, 2010, 48(S1) :255-270.
[11]梁冠群, 危银涛, 赵崇雷, 等. 基于多传感器信息融合的智能轮胎载荷算法[C]∥中国力学大会2017暨庆祝中国力学学会成立60周年大会.北京, 2017:1005-1013.
LIANG Guanqun,WEI Yintao,ZHAO Chonglei,et al. Intelligent Tire Load Algorithm Based on Multi-sensor Information Fusion[C]∥Proceedings of China Mechanics Conference-2017 and Celebration of the 60th Anniversary of China Society of Mechanics. Beijing,2017:1005-1013.
[12]WESTON D A. Piezoelectric Based System and Method for Determining Tire Load:US201013977418[P]. 2018-06-19.
[13]ZOU Z, ZHANG X, ZOU Y, et al. Tire-road Friction Coefficient Estimation Method Design for Intelligent Tires Equipped with Three-axis Accelerometer[J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2021, 5(3):249-258.
[14]XU N, TANG Z, ASKARI H, et al. Direct Tire Slip Ratio Estimation Using Intelligent Tire System and Machine Learning Algorithms[J]. Mechanical Systems and Signal Processing, 2022, 175:109085.
[15]ZHU B, HAN J, ZHAO J. Tire-pressure Identification Using Intelligent Tire with Three-axis Accelerometer[J]. Sensors, 2019, 19(11):2560.
[16]李飞. 智能轮胎开发用三分轮力传感器系统研究与试验[D]. 合肥:安徽农业大学,2022.
LI Fei. Three-axes Sensor System Research and Experimentation for Intelligent Tire Development[D]. Hefei:Anhui Agricultural University, 2022.
[17]JAZAR R N . Vehicle Dynamics:Theory and Application[M]. New York:Springer, 2017.
[18]张小龙, 陈彬, 宋健, 等. 极限工况下汽车轮胎侧偏角测试方法研究[J]. 农业机械学报, 2014, 45(9):31-36.
ZHANG Xiaolong, CHEN Bing, SONG Jian, et al. Test Method Research of Vehicle Tire Slip Angle for Extreme Conditions[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(9):31-36.
[19]付聪. 轮胎侧倾侧偏极限工况力学特性研究[D]. 长春:吉林大学,2013.
FU Cong. Study on Tires Camber and Lateral Mechanics Properties under Extreme Conditions[D]. Changchun:Jilin University, 2013.
[20]ZHANG D, HOU W, GUO J, et al. Efficient Subpixel Image Registration Algorithm for High Precision Visual Vibrometry[J]. Measurement, 2021, 173:108538.
[21]XU N, TANG Z, ASKARI H, et al. Direct Tire Slip Ratio Estimation Using Intelligent Tire System and Machine Learning Algorithms[J]. Mechanical Systems and Signal Processing, 2022, 175:109085.
|