[1]唐贵基, 王晓龙. 参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J]. 西安交通大学学报, 2015, 49(5):73-81.
TANG Guiji, WANG Xiaolong. Parameter Optimized Variational Mode Decomposition Method with Application to Incipient Fault Diagnosis of Rolling Bearing[J]. Journal of Xian Jiaotong University, 2015, 49(5):73-81.
[2]LEI Y G, QIAO Z J, XU X F, et al. An Underdamped Stochastic Resonance Method with Stable-state Matching for Incipient Fault Diagnosis of Rolling Element Bearings[J]. Mechanical Systems and Signal Processing, 2017, 94(18):148-164.
[3]胥永刚, 张志新, 马朝永, 等. 改进奇异谱分解及其在轴承故障诊断中的应用[J]. 振动工程学报, 2019, 32(3):540-547.
XU Yonggang, ZHANG Zhixin, MA Chaoyong, et al. Improved Singular Spectrum Decomposition and Its Applications in Rolling Bearing Fault Diagnosis[J]. Journal of Vibration Engineering, 2019, 32(3):540-547.
[4]MOSTAFA R, MOHAMMAD R A, HAMED A. Application of Dispersion Entropy to Status Characterization of Rotary Machine[J]. Journal of Sound and Vibration, 2019, 438:291-308.
[5]YAN R Q, GAO R X. Approximate Entropy as a Diagnostic Tool for Machine Health Monitoring[J]. Mechanical Systems and Signal Processing, 2007, 21(2):824-839.
[6]何文平, 何涛, 成海英, 等. 基于近似熵的突变检测新方法[J]. 物理学报, 2011, 60(4):820-828.
HE Wenping, HE Tao, CHENG Haiying, et al. A New Method to Detect Abrupt Change Based on Approximate Entropy[J]. Acta Physice Sinica, 2011, 60(4):820-828.
[7]杨望灿, 张培林, 王怀光, 等. 基于EEMD的多尺度模糊熵的齿轮故障诊断[J]. 振动与冲击, 2015, 34(14):163-167.
YANG Wangcan, ZHANG Peilin, WANG Huai-guang, et al. Gear Fault Diagnosis Based on Multi-scale Fuzzy Entropy of EEMD[J]. Journal of Vibration Engineer,2015, 34(14):163-167.
[8]孟宗, 季艳, 闫晓丽. 基于DEMD和模糊熵的滚动轴承故障诊断方法研究[J]. 计量学报, 2016, 37(1):56-61.
MENG Zong, JI Yan, YAN Xiaoli, et al. Rolling Bearing Fault Diagnosis Based on Differential-based Empirical Mode Decomposition and Fuzzy Entropy[J]. Acta Metrologica Sinica, 2016, 37(1):56-61.
[9]YAN R Q, LIU Y B, GAO R X. Permutation Entropy:A Nonlinear Statistical Measure for Status Characterization of Rotary Machines[J]. Mechanical Systems and Signal Processing, 2012, 29(5):474-484.
[10]丁闯, 张兵志, 冯辅周, 等. 局部均值分解和排列熵在行星齿轮箱故障诊断中的应用[J]. 振动与冲击, 2017, 36(17):55-60.
DING Chuang, ZHANG Bingzhi, FENG Fuzhou, et al. Application of Local Mean Decomposition and Permutation Entropy in Fault Diagnosis of Planetary Gearboxes[J]. Journal of Vibration and Shock,2017, 36(17):55-60.
[11]ROSTAGHI M, AZAMI H. Dispersion Entropy:A Measure for Time Series Analysis[J]. IEEE Signal Processing Letters, 2016, 23(5):610-614.
[12]付文龙, 谭佳文, 王凯. 基于VMD散布熵与改进灰狼优化SVDD的轴承半监督故障诊断研究[J]. 振动与冲击, 2019, 38(22):190-197.
FU Wenlong, TAN Jiawen, WANG Kai. Semi-supervised Fault Diagnosis of Bearing Based on the VMD Dispersion Entropy and Improved SVDD with Modified Grey Wolf Optimizer[J]. Journal of Vibration Engineer,2019, 38(22):190-197.
[13]LI Y, GAO X, WANG L. Reverse Dispersion Entropy:a New Complexity Measure for Sensor Signal[J]. Sensors, 2019, 19(23):1-14.
[14]王余奎, 李洪儒, 叶鹏. 基于多尺度排列熵的液压泵故障识别[J]. 中国机械工程, 2015, 26(4):518-523.
WANG Yukui, LI Hongru, YE Peng. Fault Identification of Hydraulic Pump Based on Multi-scale Permutation Entropy[J]. China Mechanical Engineering,2015, 26(4):518-523.
[15]LI Y, JIAO S, GENG B, et al. Research on Feature Extraction of Ship-radiated Noise Based on Multi-scale Reverse Dispersion Entropy[J]. Applied Acoustics, 2021, 173(1):107737.
[16]COSTA M, GOLDBERGER A. Generalized Multi-scale Entropy Analysis:Application to Quantifying the Complex Volatility of Human Heartbeat Time Series[J]. Entropy, 2015, 17(3):1197-1203.
[17]丁嘉鑫, 王振亚, 姚立纲, 等. 广义复合多尺度加权排列熵与参数优化支持向量机的滚动轴承故障诊断[J]. 中国机械工程, 2021, 32(2):147-155.
DING Jiaxin, WANG Zhenya, YAO Ligang, et al. Rolling Bearing Fault Diagnosis Based on GCMWPE and Parameter Optimization SVM[J]. China Mechanical Engineering, 2021, 32(2):147-155.
[18]刘武强, 申金星, 杨小强. 基于精细复合多元多尺度加权排列熵与流形学习的滚动轴承故障诊断[J]. 轴承, 2021(9):54-60.
LIU Wuqiang, SHEN Jinxing, YANG Xiaoqiang. Fault Diagnosis for Rolling Bearing Based on RCMMWPE and Manifold Learning[J]. Bearing,2021(9):54-60.
[19]AZAMI H, ESCUDERO J. Refined Composite Multivariate Generalized Multi-scale Fuzzy Entropy:A Tool for Complexity Analysis of Multichannel Signals[J]. Physical A, 2017, 465:261-276.
[20]WEI D, ZHANG S Q, HU M F, et al. Intelligent Fault Diagnosis of Wind Turbine Gearboxes Based on Refined Generalized Multi-scale State Joint Entropy and Robust Spectral Feature Selection[J]. Nonlinear Dynamics, 2022, 107:2485-2517.
[21]SARAFRAZI S, NEZAMABADI-POUR H. Facing the Classification of Binary Problems with a GSA-SVM Hybrid System[J]. Mathematical and Computer Modelling, 2013, 57(1/2):270-278.
[22]XUE H, BAI Y, HU H, et al. A Novel Hybrid Model Based on TVIW-PSO-GSA Algorithm and Support Vector Machine for Classification Problems[J]. IEEE Access, 2019, 7:27789-27801.
[23]李森娟, 张萍, 岳大为, 等. 基于支持向量机的风电机组故障预测[J]. 计算机仿真, 2022, 39(5):84-88.
LI Senjuan, ZHANG Ping, YUE Dawei, et al. Fault Prediction of Wind Turbine Based on Support Vector Machine[J]. Computer Simulation,2022, 39(5):84-88.
[24]WANG Z Y, YAO L G, CAI Y W. Rolling Bearing Fault Diagnosis Using Generalized Refined Composite Multi-scale Sample Entropy and Optimized Support Vector Machine[J]. Measurement, 2020, 156:107574.
[25]RASHEDI E, NEZAMABADI-POUR H, SARYAZDI S. GSA:A Gravitational Search Algorithm[J]. Information Sciences, 2009, 179(13):2232-2248.
[26]MOSHREFZADEH A. Condition Monitoring and Intelligent Diagnosis of Rolling Element Bearings under Constant/Variable Load and Speed Conditions[J]. Mechanical Systems and Signal Processing, 2021, 149:107153.
|