[1]ZIKRIA Y B, KIM S W, AFZAL M K, et al. 5G Mobile Services and Scenarios:Challenges and Solutions[J]. Sustainability, 2018, 10(10):3626.
[2]YU H, LEE H, JEON H. What Is 5G? Emerging 5G Mobile Services and Network Requirements[J]. Sustainability, 2017, 9(10):1848.
[3]QURESHI H N, MANALASTAS M, ZAIDI S M A, et al. Service Level Agreements for 5G and Beyond:Overview, Challenges and Enablers of 5G-Healthcare Systems[J]. IEEE Access, 2021, 9:1044-1061.
[4]SHI F, WANG J, SHI J, et al. Review of Artificial Intelligence Techniques in Imaging Data Acquisition, Segmentation, and Diagnosis for COVID-19[J]. IEEE Reviews in Biomedical Engineering, 2021, 14:4-15.
[5]MACRINA G, DI PUGLIA PUGLIESE L, GUERRIERO F, et al. Drone-aided Routing:A Literature Review[J]. Transportation Research Part C:Emerging Technologies, 2020, 120:102762.
[6]BOURSIANIS A D, PAPADOPOULOU M S, DIAMANTOULAKIS P, et al. Internet of Things(IoT) and Agricultural Unmanned Aerial Vehicles(UAVs) in Smart Farming:A Comprehensive Review[J]. Internet of Things, 2022, 18:100187.
[7]RATTA P, KAUR A, SHARMA S, et al. Application of Blockchain and Internet of Things in Healthcare and Medical Sector:Applications, Challenges, and Future Perspectives[J]. Journal of Food Quality, 2021(1):1-20.
[8]方明, 王爱琴, 谢敬佩, 等. 电子封装材料的研究现状及发展[J]. 热加工工艺, 2011, 40(4):84-87.
FANG Ming, WANG Aiqin, XIE Jingpei, et al. Research Status and Progress of Electronic Packaging Materials[J]. Hot Working Technology, 2011,40(4):84-87.
[9]张臣, 沈能珏. 电子封装材料现状与发展[J]. 新材料产业, 2003(3):5-11.
ZHANG Chen, SHEN Nengyu. Current Status and Development of Electronic Packaging Materials[J]. Advanced Materials Industry, 2003(3):5-11.
[10]麦久翔. 一代全新的印制电路板——陶瓷印制电路板[J]. 上海航天, 1989(6):46-50.
MAI Jiuxiang. A Brand New Generation of Printed Circuit Board—Ceramic Printed Circuit Board[J]. Aerospace Shanghai, 1989(6):46-50.
[11]秦典成, 李保忠, 肖永龙. 陶瓷金属化研究现状及发展趋势[J]. 中国陶瓷工业, 2017, 24(5):30-36.
QIN Diancheng, LI Baozhong, XIAO Yonglong. Current Status and Development of Ceramic Metallization[J]. China Ceramic Industry, 2017, 24(5):30-36.
[12]王玲, 康文涛, 高朋召,等. 陶瓷金属化的方法、机理及影响因素的研究进展[J]. 陶瓷学报, 2019, 40(4):411-417.
WANG Ling, KANG Wentao, GAO Pengzhao, et al. Research Progress of Methods, Mechanisms and Influencing Factors of Ceramic Metallization[J]. Juurnal of Ceramics, 2019, 40(4):411-417.
[13]郭燕龙. Al2O3陶瓷表面金属图形化制备及其应用研究[D]. 成都:电子科技大学, 2017.
GUO Yanlong. Research on Fabrication of Metallic Pattern Based on Alumina Ceramics Surface and Its Application[D]. Chengdu:University of Electronic Science and Technology of China, 2017.
[14]李文芳, 黄小忠, 杨兵初, 等. 氧化铍陶瓷的应用综述[J]. 轻金属, 2010(2):20-23.
LI Wenfang, HUANG Xiaozhong, YANG Bingchu, et al. The Application of Beryllia Ceramics[J]. Light Metals, 2010(2):20-23.
[15]刘华珠, 孟昭光, 雷秋丽, 等. 陶瓷基印制电路板的关键技术研究[J]. 印制电路信息, 2019, 27(2):30-33.
LIU Huazhu, MENG Zhaoguang, LEI Qiuli, et al. Research on the Key Technology of Ceramic Substrate PCB[J]. Printed Circuit Information, 2019, 27(2):30-33.
[16]袁文杰, 李晓云, 丘泰. 高热导率氮化铝陶瓷的研究进展[J]. 材料导报, 2013(7):43-46.
YUAN Wenjie, LI Xiaoyun, QIU Tai. Reserach Progress on Aluminum Nitride with High Thermal Conductivity[J]. Materials Reports, 2013(7):43-46.
[17]BELYAKOV A V, KUZNETSOVA I G, KUFTYREV R Y, et al. Metallization of Aluminun Nitride Ceramic(Review)[J]. Glass and Ceramics, 2012, 69(7):270-273.
[18]薛生杰. 大功率LED散热用陶瓷金属基板的制备与性能研究[D]. 重庆:重庆大学, 2014.
XUE Shengjie. Preparation and Performance of the Metalized Ceramic Substrate for High-power Light Emitting Doxides(LED) Heat Dissipation[D]. Chongqing:Chongqing University, 2014.
[19]谢金平, 范小玲, 宗高亮. 浅谈大功率LED陶瓷基板制作工艺及填通孔技术[J]. 电镀与涂饰, 2021, 40(13):1023-1026.
XIE Jinping, FAN Xiaoling, ZONG Gaoliang. Discussion on Manufacturing Process and Through-hole Filling Technology of Ceramic Substrate Applied to High-powered LEDs[J]. Electroplating & Finishing, 2021, 40(13):1023-1026.
[20]王新中,刘文,鲍锋辉.氮化铝陶瓷基板在高功率LED中应用研究[J]. 科技视界, 2014(16):19-20.
WANG Xinzhong, LIU Wen, BAO Fenghui. Application of Aluminum Nitride Ceramic Substrate in High-power LED[J]. Science & Technology Vision, 2014(16):19-20.
[21]倪羽茜, 井红旗, 孔金霞, 等. 高功率半导体激光器陶瓷封装散热性能研究[J]. 发光学报, 2016, 37(5):561-566.
NI Yuqian, JING Hongqi, KONG Jinxia, et al. Thermal Performance of High-power Semiconductor Laser Packaged by Ceramic Submount[J]. Chinese Journal of Luminescence, 2016, 37(5):561-566.
[22]张永清, 阴生毅, 高向阳, 等. 新型高热导率氮化铝基微波衰减陶瓷研究[J]. 稀有金属材料与工程, 2020, 49(2):655-660.
ZHANG Yongqing, YIN Shengyi, GAO Xiang-yang, et al. Study on Aluminum Nitride Microwave Attenuation Ceramics with High Thermal Conductivity[J]. Rare Metal Materials and Engineering, 2020, 49(2):655-660.
[23]何端鹏, 黄雪吟, 任刚,等. 高热导电绝缘氮化铝陶瓷在宇航器件中的应用:概述,挑战和展望[J]. 硅酸盐学报, 2022, 50(6):1701-1714.
HE Duanpeng, HUANG Xueyin, REN Gang, et al. Development on High Thermal Conductiveand Electric Insulative AlN Ceramics in Aerospace Devices[J]. Journal of Chinese Ceramic Society, 2022, 50(6):1701-1714.
[24]高鹏. 高导热氮化铝基微波衰减材料的制备及性能研究[D]. 北京:北京科技大学, 2015.
GAO Peng. Study on Preparation and Property of Thermal Conductivity AlN Microwave Attenuation Composite Ceramics[D]. Beijing:University of Science and Technology Beijing, 2015.
[25]刘会灵. 基于氮化铝薄膜的高频、高性能压电声波谐振器的设计与制备研究[D]. 上海:上海师范大学, 2022.
LIU Huiling. Design and Fabrication of High Frequency and High Performance Piezoelectric Acoustic Resonator Based on Aluminum Nitride Thin Film[D]. Shanghai:Shanghai Normal University, 2022.
[26]HICKMAN A L, CHAUDHURI R, BADER S J, et al. Next Generation Electronics on the Ultra-wide-bandgap Aluminum Nitride Platform[J]. Semiconductor Science and Technology, 2021, 36(4):044001.
[27]WANG P R, LI J, WANG G Q, et al. Multimaterial Additive Manufacturing of LTCC Matrix and Silver Conductors for 3D Ceramic Electronics[J]. Advanced Materials Technologies, 2022, 7(8):2101462.
[28]MOUAWAD B, THOLLIN B, BUTTAY C, et al. Direct Copper Bonding for Power Interconnects:Design, Manufacturing, and Test[J]. IEEE Transactions on Components Packaging & Manufacturing Technology, 2017, 5(1):143-150.
[29]WEI X, XU H, ZHAN J, et al. Comparative Studies on Microstructures, Strengths and Reliabilities of Two Types of AlN Direct Bonding Copper Substrates[J]. Ceramics International, 2018, 44(15):18935-18941.
[30]MA S, LIU L, BROMBERG V, et al. Electroless Copper Plating of Inkjet-printed Polydopamine Nanoparticles:a Facile Method to Fabricate Highly Conductive Patterns at Near Room Temperature[J]. ACS Applied Material & Interfaces, 2014, 6(22):19494-19498.
[31]XU W Z, XU J B, LU H S. Direct Copper Plating on Ultra-thin Sputtered Cobalt Film in an Alkaline Bath[J]. Journal of the Electrochemical Society, 2013, 160(12):D3075.
[32]LYU M, LIU J, WANG S, et al. Higher-resolution Selective Metallization on Alumina Substrate by Laser Direct Writing and Electroless Plating[J]. Applied Surface Science, 2016, 366:227-232.
[33]ZHANG J, FENG J, JIA L, et al. Laser-induced Selective Metallization on Polymer Substrates Using Organocopper for Portable Electronics[J]. ACS Applied Materials & Interfaces, 2019, 11(14):13714-13723.
[34]林国强. 陶瓷元件免烧型贱金属电极制备技术研究[D]. 成都:电子科技大学, 2017.
LIN Guoqiang. Research on Preparation Technology of Ceramic Component with Sintering-free Base Metal Electrode[D]. Chengdu:University of Electronic Science and Technology, 2017.
[35]张景. 喷墨印制用银基功能性油墨的制备及应用研究[D]. 成都:电子科技大学, 2017.
ZHANG Jing. Research on Preparation and Application of Inkjet Printing with Silver Based Functional Inks[D]. Chengdu:University of Electronic Science and Technology, 2017.
[36]钱垒, 兰红波, 赵佳伟, 等. 电场驱动喷射沉积3D打印[J]. 中国科学:技术科学, 2018, 48(7):773-782.
QIAN Lei, LAN Hongbo, ZHAO Jiawei, et al. Electric-field-driven Jet Deposition 3D Printing[J]. Scientia Sinica(Technological), 2018, 48(7):773-782.
[37]张勇霞, 张广明, 周龙健,等. 电场驱动喷射微3D打印的高性能纸基电路制造工艺研究[J]. 中国机械工程, 2022, 33(10):1244-1259.
ZHANG Yongxia, ZHANG Guangming, ZHOU Longjian, et al. High performance Paper-based Electronic Fabricated by Electric-field-driven Jet Micro 3D Printing[J]. China Mechanical Engineering, 2022,33(10):1244-1259.
[38]ZHANG G, LAN H, QIAN L, et al. A Microscale 3D Printing Based on the Electric-field-driven Jet[J]. 3D Printing and Additive Manufacturing, 2020, 7(1):37-44.
[39]DELAGE A, DELHOTE N, VERDEYME S, et al. Aerosol Jet Printing of Millimeter Wave Transmission Lines on 3D Ceramic Substrates Made by Additive Manufacturing[C]∥2018 IEEE/MTT-S International Microwave Symposium-IMS. Philadelphia:IEEE, 2018:1557-1560.
[40]KITTILA M, HAGBERG J, JAKKU E, et al. Direct Gravure Printing(DGP) Method for Printing Fine-line Electrical Circuits on Ceramics[J]. IEEE Transactions on Electronics Packaging Manufacturing, 2004, 27(2):109-114.
[41]ZHAO F, JIAO C, XIE D. Research on Laser-assisted Selective Metallization of a 3D Printed Ceramic Surface[J]. RSC Advances, 2020, 10(72):44015-44024.
|