[1]徐金亭, 牛金波, 陈满森, 等. 精密复杂曲面零件多轴数控加工技术研究进展[J]. 航空学报, 2021,42(10):31-54.
XU Jinting, NIU Jinbo, CHEN Mansen, et al. Research Progress of Multi-axis CNC Machining Technology for Precision Complex Curved Surface Parts[J].Journal of Aviation, 2021, 42 (10):31-54.
[2]郭东明, 孙玉文, 贾振元. 高性能精密制造方法及其研究进展[J]. 机械工程学报, 2014,50(11):119-134.
GUO Dongming,SUN Yuwen, JIA Zhenyuan. Methods and Research Progress of High Performance Manufacturing[J]. Journal of Mechanical Engineering, 2014, 50(11):119-134.
[3]朱泽润. 刀具姿态对切削力的影响机理与曲面加工策略优化[D]. 武汉:华中科技大学, 2018.
ZHU Zerun. Influence Mechanism of Tool Posture on Cutting Force and Optimization of Surface Machining Strategy[D]. Wuhan:Huazhong University of Science and Technology, 2018.
[4]张静, 郭靖, 杨杨. 多轴铣削加工表面形貌建模与仿真研究分析[J]. 机械研究与应用, 2020,33(1):45-49.
ZHANG Jing, GUO Jing, YANG Yang.Modeling and Simulation Analysis of Multi-axis Milling Surface Morphology[J]. Mechanical Research and Application, 2020, 33 (1) :45-49.
[5]丘宏岳, 唐晓鑫. 五轴数控铣削加工后置处理及其加工编程[J]. 内燃机与配件, 2020(13):36-38.
QIU Hongyue,TANG Xiaoxin. Post-processing and Programming of Five-axis CNC Milling[J]. Internal Combustion Engine and Accessories, 2020(13):36-38.
[6]ZHANG X, ZHANG J, ZHENG X, et al. Tool Orientation Optimization of 5-axis Ball-end Milling Based on an Accurate Cutter/Workpiece Engagement Model[J]. CIRP Journal of Manufacturing Science and Technology, 2017,19:106-116.
[7]郑小娟. 五轴高速铣削表面的形貌分析与工艺优化[D].广州:华南理工大学, 2015.
ZHENG Xiaojuan. Surface Morphology Analysis and Process Optimization of Five-axis High Speed Milling[D].Guangzhou:South China University of Technology, 2015.
[8]赵厚伟. H13钢硬态铣削表面形貌建模及预测[D]. 济南:山东大学, 2013.
ZHAO Houwei.Modeling and Prediction of Hard Milling Surface Topography of H13 Steel[D]. Jinan:Shandong University, 2013.
[9]张为, 都晓锋, 程超, 等. 球头铣刀加工曲面微单元理论建模与实验验证[J]. 中国机械工程, 2018,29(13):1553-1559.
ZHANG Wei, DU Xiaofeng, CHENG Chao, et al. Theoretical Modeling and Experimental Verification of Spherical End Milling Surface Microunits[J]. China Mechanical Engineering, 2018,29(13):1553-1559.
[10]MONNO M T P A. Surface Morphology Prediction Model for Milling Operations[J]. The International Journal of Advanced Manufacturing Technology, 2020,106(7/8):3189-3201.
[11]郑勐, 董永亨. 铣削加工表面几何特征的仿真研究[J]. 机械制造, 2014,52(8):57-60.
ZHENG Meng,DONG Yongheng. Simulation of Geometric Characteristics of Milling Surfaces[J]. Machinery Manufacturing, 2014,52(8):57-60.
[12]范思敏, 肖继明, 董永亨, 等. 球头铣刀铣削球面的表面形貌建模与仿真研究[J]. 中国机械工程, 2020,31(24):2924-2930.
FAN Simin, XIAO Jiming, DONG Yongheng, et al. Modeling and Simulation of Surface Topography of Milling Spherical Surfaces with Ball-end Milling Cutters[J]. China Mechanical Engineering,2020,31(24):2924-2930.
[13]YANG D, LIU Z. Surface Plastic Deformation and Surface Topography Prediction in Peripheral Milling with Variable Pitch End Mill[J]. International Journal of Machine Tools and Manufacture, 2015,91:43-53.
[14]XU J, XU L, GENG Z, et al. 3D Surface Topography Simulation and Experiments for Ball-end NC Milling Considering Dynamic Feedrate[J]. CIRP Journal of Manufacturing Science and Technology, 2020,31:210-223.
[15]ZHANG Q, ZHANG S, SHI W. Modeling of Surface Topography Based on Relationship between Feed Per Tooth and Radial Depth of Cut in Ball-end Milling of AISI H13 Steel[J]. The International Journal of Advanced Manufacturing Technology, 2018,95(9/12):4199-4209.
[16]GAO H, YUE C, LIU X, et al. Simulation of Surface Topography Considering Cut-in Impact and Tool Flank Wear[J]. Applied Sciences. 2019, 9(4):732-744.
[17]张海. 五轴球头铣削加工表面形貌预测与实验分析[D].大连:大连理工大学, 2017.
ZHANG Hai. Surface Morphology Prediction and Experimental Analysis of Five-axis Ball Head Milling[D]. Dalian:Dalian University of Technology,2017.
[18]LAYEGH K S E, LAZOGLU I. 3D Surface Topography Analysis in 5-axis Ball-end Milling[J]. CIRP Annals, 2017,66(1):133-136.
[19]XU J, ZHANG H, SUN Y.Swept Surface-based Approach to Simulating Surface Topography in Ball-end CNC Milling[J].The International Journal of Advanced Manufacturing Technology, 2018,98(1/4):107-118.
[20]LAVERNHE S, QUINSAT Y, LARTIGUE C. Model for the Prediction of 3D Surface Topography in 5-axis Milling[J]. The International Journal of Advanced Manufacturing Technology, 2010,51(9/12):915-924.
[21]常树禹. 球头铣刀切削加工表面形貌预测与仿真[D].大连:大连理工大学, 2015.
CHANG Shuyu. Prediction and Simulation of Surface Topography in Ball-end Milling[D]. Dalian:Dalian University of Technology, 2015.
[22]JI Y, WANG X, LIU Z, et al. Stability Prediction of Five-axis Ball-end Finishing Milling by Considering Multiple Interaction Effects between the Tool and Workpiece[J]. Mechanical Systems and Signal Processing, 2019,131:261-287.
[23]LOTFI S, WASSILA B, GILLES D. Cutter Workpiece Engagement Region and Surface Topography Prediction in Five-axis Ball-end Milling[J]. Machining Science and Technology, 2018. 22(2):181-202.
[24]PRAT D, FROMENTIN G, POULACHON G, et al. Modeling and Analysis of Five-axis Milling Configurations and Titanium Alloy Surface Topography[J]. Journal of Manufacturing Science and Engineering, 2016,138(6):4032083.
[25]DONG Y, LI S, ZHANG Q,et al. Modeling and Analysis of Micro Surface Topography from Ball-end Milling in a Trochoidal Milling Mode[J]. Micromachines, 2021,12(10):1203.
[26]CHEN W, XIE W, HUO D, et al. A Novel 3D Surface Generation Model for Micro Milling Based on Homogeneous Matrix Transformation and Dynamic Regenerative Effect[J]. International Journal of Mechanical Sciences, 2018,144:146-157.
[27]ZHANG X, ZHANG W, ZHANG J,et al. Systematic Study of the Prediction Methods for Machined Surface Topography and Form Error during Milling Process with Flat-end Cutter[J]. Part B, Journal of Engineering Manufacture, 2019,233(1):226-242.
[28]ZHOU R, CHEN Q. An Analytical Prediction Model of Surface Topography generated in 4-axis Milling Process[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115(9/10):3289-3299.
[29]ZHANG X, PAN X, WANG G. Influence Factors of Surface Topography in Micro-side Milling[J]. The International Journal of Advanced Manufacturing Technology, 2019,105(12):5239-5245.
[30]ZHANG C, ZHANG H, LI Y, et al. Modeling and On-line Simulation of Surface Topography Considering Tool Wear in Multi-axis Milling Process[J]. International Journal of Advanced Manufacturing Technology, 2015,77(1/4):735-749.
[31]HUANG F, JIN X. Surface Texture Generation Using High-feed Milling with Spindle Speed Modulation[J]. Precision Engineering, 2021. 72:13-24.
|