China Mechanical Engineering ›› 2023, Vol. 34 ›› Issue (17): 2048-2057,2076.DOI: 10.3969/j.issn.1004-132X.2023.17.004

Previous Articles     Next Articles

Design and Service Performance Optimization of Induction Heating Methanol Reforming Devices Based on Fluid Pressure Drop Control

XIAO Gang1,2,3;ZHANG Bin1,2;LI Shichun1,2;YAN Huijun1,2;YANG Qinwen3   

  1. 1.School of Mechanical Engineering,Hunan University of Science and Technology,
    Xiangtan,Hunan,411201
    2.Hunan Provincial Key Laboratory of High Efficiency and Precision Machining of Difficult to 
    Machine Material,Hunan University of Science and Technology,Xiangtan,Hunan,411201
    3.College of Mechanical and Vehicle Engineering,Hunan University,Changsha,410082
  • Online:2023-09-10 Published:2023-09-28

基于流体压降控制的感应加热甲醇重整装置设计及其服役性能优化

肖罡1,2,3;张斌1,2;李时春1,2;严惠军1,2;杨钦文3   

  1. 1.湖南科技大学机电工程学院,湘潭,411201
    2.湖南科技大学难加工材料高效精密加工湖南省重点实验室,湘潭,411201
    3.湖南大学机械与运载工程学院,长沙,410082
  • 通讯作者: 杨钦文(通信作者),女,1985年生,副教授、博士研究生导师。研究方向为氢能源技术与燃料电池及其电堆系统优化设计。E-mail:yangqw@hnu.edu.cn。
  • 作者简介:肖罡,男,1983年生,教授、博士研究生导师。研究方向为智能新能源汽车及复杂非线性系统优化设计。获发明专利46项。发表论文110余篇。E-mail:xg_1221@163.com。
  • 基金资助:
    国家自然科学基金(52075159);江西省自然科学基金杰出青年基金(20224ACB218002);江西省高层次高技能领军人才培养工程项目;湖南省自然科学基金(2022JJ30019);湖南省教育厅科学研究重点项目(21A0301);省部共建特色金属材料与组合结构全寿命安全国家重点实验室开放基金(2022GXYSOF24)

Abstract: Based on the consideration of fluid pressure drop control, a new type of induction heating reforming device was proposed. The service performance simulation model and prediction model of the system were constructed. The influences of key parameters on energy conversion and reforming transformation were analyzed, and the collaborative optimization design of the system supercharging structure and operating parameters was completed. The results show that with the increasing of the overlap degree of the pressurized heating plate, the angle toward the inlet and the acute angle decreases gradually, the electric-hydrogen energy conversion ratio, methanol conversion and hydrogen yield increase significantly. Meanwhile, the temperature difference and flow energy loss of the reaction gas before and after conversion increase. The maximum electric-hydrogen energy conversion ratio, the minimum temperature difference and flow energy loss before and after conversion were set as the comprehensive optimization objectives. The optimization was carried out by using single hidden layer back propagation(BP) neural network and genetic algorithm(GA), and the results show that when the overlap degree of pressurized heating plate is as 0.45, the angle is as 75° toward the inlet, the reactant supply flow velocity is as 1.1 m/s, the net power of the reformer is as 460 W. Compared with the control structure without fluid pressure drop, the electro-hydrogen energy conversion ratio of the proposed reformer is improved by 64.17%. 

Key words: methanol reforming for hydrogen production, induction heating, tubular reformer, fluid pressure drop control

摘要: 结合流体压降控制的思考,提出了一种新型感应加热重整装置,构建了系统服役性能仿真模型和预测模型,分析了关键参数对能量转换以及重整转化的影响,完成了系统增压结构与运行参数的协同优化设计。研究结果表明:随着增压发热片重合度的增大,角度朝向入口端布置且呈锐角逐渐减小,电氢能转换比、甲醇转化率、氢气产率显著增大,同时反应气转化前后的温差及其流动能量损耗增大。设置电氢能转换比最大、转化前后温差和流动能量损耗最小为综合优化目标,采用单隐含层反向传播神经网络和遗传算法进行寻优,得到增压发热片重合度为0.45、角度为75°且朝向入口端、反应物供给流速为1.1 m/s时,重整器净功率为460 W,相较于无流体压降控制结构,所提重整器的电氢能转换比提高了64.17%。

关键词: 甲醇重整制氢, 感应加热, 管式重整器, 流体压降控制

CLC Number: