[1]HU B, YU R Q, ZOU H. Magnetic Non-destructive Testing Method for Thin-plate Aluminum Alloys[J]. NDT & E International, 2012, 47:66-69.
[2]胡博,于润桥,徐伟津. 人工槽模拟GH4169涡轮盘表面裂纹缺陷的微磁检测[J]. 航空学报, 2015, 36(10):3450-3456.
HU Bo, YU Runqiao, XU Weijing. Micro Magnetic Detection of Surface Crack Defects of GH4169 Turbine Disk Simulated by Artificial Groove[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10):3450-3456.
[3]LIU Bin, HE Luyao, ZHANG Hai, et al. Quantitative Study of Magnetic Memory Signal Characteristic Affected by External Magnetic Field[J]. Measurement, 2019, 131:730-736.
[4]杨涛, 王太勇, 蒋奇. 人机合作式管道漏磁信号分析与缺陷定量识别[J]. 中国机械工程, 2004, 15(6):488-490.
YANG Tao, WANG Taiyong, JIANG Qi. Magnetic Leakage Signal Analysis and Defect Quantitative Identification of Man-Machine Cooperative Pipeline[J]. China Mechanical Engineering, 2004, 15(6):488-490.
[5]SHI Zhanqun, XU Xiaoyu, MA Jiaojiao, et al. Quantitative Detection of Cracks in Steel Using Eddy Current Pulsed Thermography[J]. Sensors, 2018, 18(4):1070.
[6]KUTS Y, MAIEVSKYI S, PROTASOV A, et al. Study of Parametric Transducer Operation in Pulsed Eddy Current Non-destructive Testing[C]∥2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO). Kyiv, 2018:594-597.
[7]RAMUHALLI P, UDAP L, UDPA S S. Electromagnetic NDE Signal Inversion by Function-approximation Neural Networks[J]. IEEE Transactions on Magnetics, 2002, 38(6):3633-3642.
[8]JOSHI A, UDPA L, UDPA S, et al. Adaptive Wavelets for Characterizing Magnetic Flux Leakage Signals From Pipeline Inspection[J]. IEEE Transactions on Magnetics, 2006, 42(10):3168-3170.
[9]ZHANG Donglai, ZHANG Enchao, YAN Xiaolan. Quantitative Method for Detecting Internal and Surface Defects in Wire Rope[J]. NDT & E International, 2021, 119:102405.
[10]KHODAYARI-ROSTAMABAD A, REILLY J P, NIKOLOVA N K, et al. Machine Learning Techniques for the Analysis of Magnetic Flux Leakage Images in Pipeline Inspection[J]. IEEE Transactions on Magnetics, 2009, 45(8):3073-3084.
[11]JUN J, LEE J. Nondestructive Evaluation of Cracks in a Paramagnetic Specimen with Low Conductivity by Penetration of Magnetic Fluid[J]. NDT & E International,2009, 42(7):297-303.
[12]PRIEWALD R, MAGELE C, LEDGER P, et al. Fast Magnetic Flux Leakage Signal Inversion for the Reconstruction of Arbitrary Defect Profiles in Steel Using Finite Elements[J]. IEEE Transactions on Magnetics, 2013, 49(1):506-516.
[13]FU Ping, HU Bo, LAN Xiwang, et al. Simulation and Quantitative Study of Cracks in 304 Stainless Steel under Natural Magnetization Field[J]. NDT & E International, 2021, 119:102419.
[14]VAPNIKV N. An Overview of Statistical Learning Theory[J].IEEE Transon Neural Net Works,1999,10(5) :988-999.
[15]VAPNIKV N. The Nature of Statistical Learning Theory[M]. New York:Springer-Verlag, 1995.
[16]YAMAN H, AHMED I A, A'FZA S, et al. Two Steps Hybrid Calibration Algorithm of Support Vector Regression and K-nearest Neighbors[J]. Alexandria Engineering Journal, 2020, 59(3):1181-1190.
[17]DUARTE E, WAINER J. Empirical Comparison of Cross-validation and Internal Metrics for Tuning SVM Hyperparameters[J]. Pattern Recognition Letters, 2017, 88:6-11.
[18]HEMEIDA A M, BAKRY O M, MOHAMED A A A, et al. Genetic Algorithms and Satin Bowerbird Optimization for Optimal Allocation of Distributed Generators in Radial System[J]. Applied Soft Computing Journal,2021,111:107727.
[19]HUANG Wencheng, LIU Hongyi, ZHANG Yue, et al. Railway Dangerous Goods Transportation System Risk Identification:Comparisons among SVM, PSO-SVM, GA-SVM and GS-SVM[J]. Applied Soft Computing, 2021, 109:107541.
|