[1]PENG Jingfu, DING Ye, ZHANG Gang, et al. Smoothness-oriented Path Optimization for Robotic Milling Processes[J]. Science China Technological Sciences, 63(9):1751-1763.
[2]GUO Kai, ZHANG Yiran, SUN Jie.Towards Stable Milling:Principle and Application of Active Contact Robotic Milling[J]. International Journal of Machine Tools and Manufacture, 2022, 182:103952.
[3]梁志强, 石贵红, 杜宇超, 等. 考虑主轴-刀柄结合面特性的机器人铣削系统刀尖频响预测研究[J]. 中国机械工程, 2023, 34(1):2-9.
LIANG Zhiqiang, SHI Guihong, DU Yuchao, et al. Research on Tool Tip Frequency Response Prediction of Robot Milling Systems Considering Characteristics of Spindle-toolholder Interface[J]. China Mechanical Engineering, 2023, 34(1):2-9.
[4]XIONG Gang, LI Zhoulong, DING Ye, et al. Integration of Optimized Feedrate into an Online Adaptive Force Controller for Robot Milling[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(3/4):1533-1542.
[5]XIONG Gang, LI Zhoulong, DING Ye, et al. A Closed-loop Error Compensation Method for Robotic Flank Milling[J]. Robotics and Computer-integrated Manufacturing, 2020, 63:101928.
[6]邓柯楠, 高栋, 马守东, 等. 基于迁移学习的铣削机器人定位误差补偿方法[J].机械工程学报, 2022, 58(14):170-180.
DENG Kenan, GAO Dong, MA Shoudong, et al. An Efficient Error Compensation Method for Milling Robot Based on Transfer Learning[J]. Journal of Mechanical Engineering, 2022, 58(14):170-180.
[7]YUAN Lei, PAN Zengxi, DING Donghong, et al. A Review on Chatter in Robotic Machining Process Regarding both Regenerative and Mode Coupling Mechanism[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(5):2240-2251.
[8]LI Jing, LI Biao, SHEN Nanyan, et al. Effect of the Cutter Path and the Workpiece Clamping Position on the Stability of the Robotic Milling System[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(9/12):2919-2933.
[9]XIN Shihao, PENG Fangyu, TANG Xiaowei, et al. Research on the Influence of Robot Structural Mode on Regenerative Chatter in Milling and Analysis of Stability Boundary Improvement Domain[J]. International Journal of Machine Tools and Manufacture, 2022, 179:103918.
[10]CORDES M, HINTZE W, ALTINTAS Y. Chatter Stability in Robotic Milling[J]. Robotics and Computer Integrated Manufacturing, 2019, 55:11-18.
[11]廖文和, 郑侃, 孙连军, 等. 大型复杂构件机器人加工稳定性研究进展[J]. 航空学报, 2022, 43(1):164-183.
LIAO Wenhe, ZHENG Kan, SUN Lianjun, et al. Review on Chatter Stability in Robotic Machining for Large Complex Components[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1):164-183.
[12]杨靖, 张小俭, 吴毅, 等. 基于刚度定向的工业机器人铣削姿态优化研究[J]. 中国机械工程, 2022, 33(16):1957-1964.
YANG Jing, ZHANG Xiaojian, WU Yi, et al. Posture Optimization Based on Stiffness Orientation Method for Industrial Robotic Milling[J]. China Mechanical Engineering, 2022, 33(16):1957-1964.
[13]陶波, 赵兴炜, 李汝鹏, 等. 机器人测量-操作-加工一体化技术研究及其应用[J]. 中国机械工程, 2020, 31(1):49-56.
TAO Bo, ZHAO Xingwei, LI Rupeng, et al. Research on Robotic. Measurement-Operation-Machining Technology and Its Application[J]. China Mechanical Engineering, 2020, 31(1):49-56.
[14]GIENKE O, PAN Zengxi, YUAN Lei, et al. Mode Coupling Chatter Prediction and Avoidance in Robotic Machining Process[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(5/8):2103-2116.
[15]CELIKAG H, OZTURK E, SIMS N D. Can Mode Coupling Chatter Happen in Milling[J]. International Journal of Machine Tools and Manufacture, 2021, 165:103738.
[16]HE Fengxia, LIU Yu, LIU Kuo. A Chatter-free Path Optimization Algorithm Based on Stiffness Orientation Method for Robotic Milling[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(9/12):2739-2750.
[17]王跃辉, 王民. 金属切削过程颤振控制技术的研究进展[J]. 机械工程学报, 2010, 46(7):166-174.
WANG Yuehui, WANG Min. Advances on Machining Chatter Suppression Research[J]. Journal ofMechanical Engineering, 2010, 46(7):166-174.
[18]YANG Bin, GUO Kai, ZHOU Qian ,et al. Early Chatter Detection in Robotic Milling under Variable Robot Postures and Cutting Parameters[J]. Mechanical Systems and Signal Processing, 2023, 186:109860.
[19]TRAN M Q, LIU Mengkun, TRAN Q V. Milling Chatter Detection Using Scalogram and Deep Convolutional Neural Network[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(3/4):1505-1516.
[20]ASLAN D, ALTINTAS Y. On-line Chatter Detection in Milling Using Drive Motor Current Commands Extracted from CNC[J]. International Journal of Machine Tools and Manufacture, 2018, 132:64-80.
[21]ZHENG Xiaochen, ARRAZOLA P, PEREZ R, et al. Exploring the Effectiveness of Using Internal CNC System Signals for Chatter Detection in Milling Process[J]. Mechanical Systems and Signal Processing, 2023, 185:109812.
[22]LI Maojun, HUANG Dingxiao, YANG Xujing. Chatter Stability Prediction and Detection during High-speed Robotic Milling Process Based on Acoustic Emission Technique[J]. The International Journal of Advanced Manufacturing Technology, 2021, 117:1589-1599.
[23]CEN L J, MELKOTE S N, CASTLE J, et al. A Method for Mode Coupling Chatter Detection and Suppression in Robotic Milling[J], Journal of Manufacturing Science and Engineering, 2018, 140(8):1-9.
[24]詹瀛鱼, 程良伦, 王涛. 解相关多频率经验模态分解的故障诊断性能优化方法[J]. 振动与冲击, 2020, 39(1):115-122.
ZHAN Yingyu, CHENG Lianglun, WANG Tao. Fault Diagnosis Performance Optimization Method Based on Decorrelation Multi-frequency EMD[J]. Journal of Vibration and Shock, 2020, 39(1):115-122.
[25]CHEN Qizhi, ZHANG Chengrui, HU Tianliang, et al. Online Chatter Detection in Robotic Machining Based on Adaptive Variational Mode Decomposition[J]. The International Journal of Advanced Manufacturing Technology, 2021, 117:555-577.
[26]LIU Yao, WANG Xiufeng, LIN Jing, et al. Early Chatter Detection in Gear Grinding Process Using Servo Feed Motor Current[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(9/12):1801-1810.
[27]CHEN Zaozao, LI Zhoulong, NIU Jinbo, et al. Chatter Detection in Milling Processes Using Frequency-domain Rényi Entropy[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(3/4):877-890.
[28]LI Kai, HE Songping, LI Bin, et al. A Novel Online Chatter Detection Method in Milling Process Based on Multiscale Entropy and Gradient Tree Boosting[J]. Mechanical Systems and Signal Processing, 2020, 135:1-22.
[29]LIU Changfu, ZHU Lida, NI Chenbing. Chatter Detection in Milling Process Based on VMD and Energy Entropy[J]. Mechanical Systems and Signal Processing, 2018, 105:169-182.
[30]JI Yongjian, WANG Xibin, LIU Zhibing, et al. Early Milling Chatter Identification by Improved Empirical Mode Decomposition and Multi-indicator Synthetic Evaluation[J]. Journal of Sound and Vibration, 2018, 433:138-159.
[31]CALISKAN H, KILIC Z M, ALTINTAS Y. On-line Energy-based Milling Chatter Detection[J]. Journal of Manufacturing Science and Engineering, 2018, 140(11):1-12.
[32]REN Yuankai, DING Ye. Online Milling Chatter Identification Using Adaptive Hankel Low-rank Decomposition[J]. Mechanical Systems and Signal Processing, 2022, 169:108758.
[33]LI Xiaohu, WAN Shaoke, HUANG Xiaowei, et al.Milling Chatter Detection Based on VMD and Difference of Power Spectral Entropy[J]. The International Journal of Advanced Manufacturing Technology, 2020, 111(7/8):2051-2063.
[34]籍永建, 王西彬, 刘志兵, 等. 包含刀具-工件多重交互与速度效应的铣削颤振稳定性分析[J]. 振动与冲击,2021,40(17):14-24.
JI Yongjian, WANG Xibin, LIU Zhibing, et al. Stability Analysis of Milling Chatter with Tool-workpiece Multiple Interactions and Velocity Effects[J]. Journal of Vibration and Shock, 2021, 40(17):14-24.
[35]HUYNH H N, RIVIERE-LORPHEVRE E, VERLINDEN O.Multibody Modelling of a Flexible 6-axis Robot Dedicated to Robotic Machining[C]∥The 5th Joint International Conference on Multibody System Dynamics. Lisboa, 2018:201885188.
[36]HAJDU D, BORGIOLI F, MICHIELS W, et al. Robust Stability of Milling Operations Based on Pseudospectral Approach[J]. International Journal of Machine Tools and Manufacture, 2020,149:103516.
[37]PAN Zengxi, ZHANG Hui, ZHU Zhenqi, et al. Chatter Analysis of Robotic Machining Process[J]. Journal of Materials Processing Technology, 2006, 173(6):301-309.
[38]CAO Hongrui, Zhou Kai, Chen Xuefeng.Chatter Identification in End Milling Process Based on EEMD and Nonlinear Dimensionless Indicators[J]. International Journal of Machine Tools and Manufacture, 2015, 92:52-59.
[39]周澄, 邓菲, 刘尧, 等. 基于神经网络和支持向量机的导波弯管腐蚀损伤程度辨识研究[J]. 机械工程学报, 2021, 57(12):136-144.
ZHOU Cheng, DENG Fei, LIU Yao, et al. Identification of Corrosion Damage Degree of Guided Wave Bend Pipe Based on Neural Network and Support Vector Machine[J]. Journal of Mechanical Engineering, 2021, 57(12):136-144.
[40]舒星, 刘永刚, 申江卫, 等. 基于改进最小二乘支持向量机与Box-Cox变换的锂离子电池容量预测[J].机械工程学报, 2021, 57(14):118-128.
SHU Xing, LIU Yonggang, SHEN Jiangwei, et al. Capacity Prediction for Lithiumion Batteries Based on Improved Least Squares Support Vector Machine and Box-Cox Transformation[J]. Journal of Mechanical Engineering, 2021, 57(14):118-128.
|