[1]康永林.近年我国热轧及冷轧板带生产现状分析[J]. 鞍钢技术, 2013(1):1-5.
KANG Yonglin. Analysis of Current Situation of Hot Rolling and Cold Rolling Strip in Our Country in Recent Years[J]. Anshan Steel Technology, 2013(1):1-5.
[2]张学辉, 毛卫民, 朱国辉, 等. 汽车用冷轧超高强度双相钢的研发和生产[J]. 武钢技术, 2008, 46(3):54-58.
ZHANG Xuehui,MAO Weimin, ZHU Guohui, et al. Development and Production of Cold-rolled Ultra-high Strength Dual-phase Steel for Automobile[J]. Wisco Technology, 2008, 46(3):54-58.
[3]谢英秀, 金鑫焱, 王利. 宝钢热镀锌钢板的开发与展望[J]. 宝钢技术, 2017(1):1-6.
XIE Yingxiu, JIN Xinyan, WANG Li. Development and Prospect of Baosteel Hot-dip Galvanized Steel Sheet[J]. Baosteel Technology, 2017(1):1-6.
[4]MUKHOPADHYAY A, IQBAL A. Prediction of Mechanical Properties of Hot Rolled, Low-carbon Steel Strips Using Artificial Neural Network[J]. Materials and Manufacturing Processes, 2005, 20(5):793-812.
[5]刘鹏飞, 杨波, 陈宇,等. 退火工艺对980 MPa级热镀锌双相钢组织及性能的影响[J]. 金属热处理, 2022, 47(11):122-125.
LIU Pengfei, YANG Bo, CHEN Yu, et al. Effect of Annealing Process on Microstructure and Properties of 980 MPa Double-phase Hot-dip Galvanized Steel[J]. Heat treatment of Metals, 2022, 47(11):122-125.
[6]SELLARS C M, WHITEMAN J A. Recrystallization and Grain Growth in Hot Rolling[J]. Metal Science, 1979, 13(3/4):187-194.
[7]SICILIANO F, JONAS J J. Mathematical Modeling of the Hot Strip Rolling of Microalloyed Nb, Multiply-alloyed Cr-Mo, and Plain C-Mn Steels[J]. Metallurgical and Materials Transactions A, 2000, 31(2):511-530.
[8]DUTTA T,DEY S,DATTA S , et al. Designing Dual-phase Steels with Improved Performance Using ANN and GA in Tandem[J]. Computational Materials Science, 2019, 157:6-16.
[9]李维刚, 杨威, 赵云涛, 等. 融合大数据与冶金机理的热轧带钢力学性能预测模型[J]. 钢铁研究学报, 2018, 30(4):302-308.
LI Weigang, YANG Wei, ZHAO Yuntao, et al. Prediction Model of Mechanical Properties of Hot Rolled Strip Steel by Combining Big Data and Metallurgical Mechanism[J]. Chinese Journal of Iron and Steel Research, 2018, 30(4):302-308.
[10]王蕾, 唐荻, 宋勇. 热轧带钢组织性能预测模型及应用[J]. 钢铁, 2016, 51(11):73-78.
WANG Lei, TANG Di, SONG Yong. Prediction Model of Microstructure and Properties of Hot Rolled Strip Steel and Its Application[J]. Iron and Steel, 2016, 51(11):73-78.
[11]LALAM S, TIWARI P K, SAHOO S, et al. Online Prediction and Monitoring of Mechanical Properties of Industrial Galvanised Steel Coils Using Neural Networks[J]. Ironmaking & Steelmaking, 2019, 46(1):89-96.
[12]ORTA A H, KAYABASI I, SENOL M G. Prediction of Mechanical Properties of Cold Rolled and Continuous Annealed Steel Grades via Analytical Model Integrated Neural Networks[J]. Ironmaking & Steelmaking,2019, 47(06):596-605.
[13]徐继伟,杨云. 集成学习方法:研究综述[J]. 云南大学学报(自然科学版), 2018, 40(6):1082-1092.
XU Jiwei, YANG Yun. Integrated Learning Methods:a Review[J]. Journal of Yunnan University (Natural Science Edition), 2018, 40(6):1082-1092.
[14]李飞飞, 宋勇, 刘超, 等. 板带力学性能预测的集成学习模型及其可靠性评价[J]. 机械工程学报, 2021, 57(2):239-246.
LI Feifei, SONG Yong, LIU Chao, et al. Integrated Learning Model for Predicting Mechanical Properties of Strip and Plate and Its Reliability Evaluation[J]. Journal of Mechanical Engineering, 2021, 57(2):239-246.
[15]王显鹏, 黄灿明, 徐子睿, 等. 基于集成学习的连退带钢质量在线预测方法[J]. 控制工程, 2017, 24(3):481-486.
WANG Xianpeng, HUANG Canming, XU Zirui, et al. Online Quality Prediction Method of Continuous Strip Based on Ensemble Learning[J]. Control Engineering, 2017, 24(3):481-486.
[16]FRIEDMAN J H . Greedy Function Approximation:a Gradient Boosting Machine[J]. The Annals of Statistics, 2001, 29(5):1189-1232.
[17]苏兴华, 孙俊明, 高翔, 等. 基于 GBDT 算法的钻井机械钻速预测方法研究[J]. 计算机应用与软件, 2019, 36(12):87-92.
SU Xinghua, SUN Junming, GAO Xiang, et al. Research on Drilling Machine Penetration Rate Prediction Method Based on GBDT Algorithm[J]. Computer Applications and Software, 2019, 36(12):87-92.
[18]赵帅, 黄亦翔, 王浩任, 等. 基于随机森林与主成分分析的刀具磨损评估[J]. 机械工程学报, 2017, 53(21): 181-189.
ZHAO Shuai, HUANG Yixiang, WANG Hao-ren, et al. Tool Wear Evaluation Based on Random Forest and Principal Component Analysis[J]. Journal of Mechanical Engineering, 2017, 53(21):181-189.
[19]吴疆, 尤飞, 蒋平. 基于回归分析和主成分分析的噪声方差估计方法[J]. 电子与信息学报, 2018, 40(5):1195-1201.
WU Jiang, YOU Fei, JIANG Ping. Noise Variance Estimation Method Based on Regression Analysis and Principal Component Analysis[J]. Journal of Electronics & Information Technology, 2018, 40(5):1195-1201.
[20]ITO K. Optimizing Support Vector Regression Hyperparameters Based on Cross-validation[C]∥Proceedings of the International Joint Conference on Neural Networks. Portland:IEEE, 2003, 3:2077-2082.
[21]刘金元, 丁勇, 李涛. 基于梯度提升决策树的航班延误分类预测[J]. 数学的实践与认识, 2018, 48(4):1-7.
LIU Jinyuan, DING Yong, LI Tao. Flight Delay Classification Prediction Based on Gradient Lifting Decision Tree[J]. Mathematics in Practice and Understanding, 2018, 48(4):1-7.
|