[1]李光霁,刘新玲.汽车轻量化技术的研究现状综述[J].材料科学与工艺,2020,28(5) :47-61.
LI Guangji , LIU Xinling.Literature Review on Research and Development of Automotive Lightweight Technology[J].Materials Science and Technology, 2020, 28(5) :47-61.
[2]洪腾蛟,董福龙,丁凤娟,等. 铝合金在汽车轻量化领域的应用研究[J]. 热加工工艺, 2020, 49(4):1-6.
HONG Tengjiao, DONG Fulong, DING Fengjuan, et al. Application of Aluminum Alloy in Automotive Lightweight[J]. Hot Working Technology,2020, 49(4):1-6.
[3]华林,魏鹏飞,胡志力. 高强轻质材料绿色智能成形技术与应用[J].中国机械工程, 2020, 31(22):2753-2762
HUA Lin, WEI Pengfei, HU Zhili. Green and Intelligent Forming Technology and Its Applications for High Strength Lightweight Materials[J]. China Mechanical Engineering , 2020,31(22):2753-2762.
[4]LIU Shutian, LI Quhao, LIU Junhuan, et al. A Realization Method for Transforming a Topology Optimization Design into Additive Manufacturing Structures[J]. Engineering,2018,4(2):277-285.
[5]王仁,杨伟群. 选择性激光熔化技术及面向航空组件的拓扑优化研究[J]. 现代制造工程, 2018 (12):24-30.
WANG Ren, YANG Weiqun. SLM Technology and Topology Optimization for Lighter Aerospace Components[J]. Modern Manufacturing Engineering, 2018 (12):24-30.
[6]赵剑峰,马智勇,谢德巧, 等. 金属增材制造技术[J]. 南京航空航天大学学报, 2014,46(5):675-683.
ZHAO Jianfeng, MA Zhiyong, XIE Deqiao, et al. Metal Additive Manufacturing Technique[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014,46(5):675-683.
[7]杨平华,高祥熙,梁菁,等. 金属增材制造技术发展动向及无损检测研究进展[J]. 材料工程,2017,45(9):13-21.
YANG Pinghua, GAO Xiangxi, LIANG Jing, et al. Development Tread and NDT Progress of Metal Additive Manufacture Technique[J]. Journal of Materials Engineering,2017,45(9):13-21.
[8]乐国敏,李强,董鲜峰, 等. 适用于金属增材制造的球形粉体制备技术[J]. 稀有金属材料与工程, 2017, 46(4):1162-1168.
LE Guomin, LI Qiang, DONG Xianfeng, et al. Fabrication Techniques of Spherical-shaped Metal Powders Suitable for Additive Manufacturing[J]. Rare Metal Materials and Engineering, 2017, 46(4):1162-1168.
[9]姜海燕,林卫凯,吴世彪,等. 激光选区熔化技术的应用现状及发展趋势[J]. 机械工程与自动化, 2019 (5):223-226.
JIANG Haiyan, LIN Weikai, WU Shibiao, et al. Application Status and Development Trend of Laser Selective Melting Technology[J]. Mechanical Engineering & Automation, 2019(5):223-226.
[10]杨强,鲁中良,黄福享,等. 激光增材制造技术的研究现状及发展趋势[J]. 航空制造技术, 2016 (12):26-31.
YANG Qiang, LU Zhongliang, HUANG Fu-xiang, et al. Research on Status and Development Trend of Laser Additive Manufacturing[J]. Aeronautical Manufacturing Technology, 2016 (12):26-31.
[11]李昂,刘雪峰,俞波,等. 金属增材制造技术的关键因素及发展方向[J]. 工程科学学报, 2019, 41(2):159-173.
LI Ang, LIU Xuefeng, YU Bo, et al. Key Factors and Developmental Directions with Regard to Metal Additive Manufacturing[J]. Chinese Journal of Engineering, 2019, 41(2):159-173.
[12]郭志飞,张虎. 增材制造技术的研究现状及其发展趋势[J]. 机床与液压, 2015, 43(5):148-151.
GUO Zhifei, ZHANG Hu. Research Status and Development Trend of Additive Manufacturing Technology[J]. Machine Tool & Hydraulics, 2015, 43(5):148-151.
[13]刘书田,李取浩,陈文炯,等. 拓扑优化与增材制造结合:一种设计与制造一体化方法[J]. 航空制造技术, 2017 (10):26-31.
LIU Shutian, LI Quhao, CHEN Wenjiong, et al. Combination of Topology Optimization and Additive Manufacturing:an Integration Method of Structural Design and Manufacturing[J]. Aeronautical Manufacturing Technology, 2017(10):26-31.
[14]朱继宏,周涵,王创,等. 面向增材制造的拓扑优化技术发展现状与未来[J]. 航空制造技术, 2020, 63(10):25-38.
ZHU Jihong, ZHOU Han, WANG Chuang, et al. Status and Future of Topology Optimization for Additive Manufacturing[J]. Aeronautical Manufacturing Technology, 2020, 63(10):25-38.
[15]王玉,李帅帅,于颖. 面向增材制造的零件结构及工艺设计[J]. 同济大学学报(自然科学版),2020,48(6):869-879.
WANG Yu, LI Shuaishuai, YU Ying. Structure Design and Process Planning for Additive Manufacturing[J]. Journal of Tongji University(Natural Science), 2020,48(6):869-879.
[16]常天行,刘彬,方学伟,等. 铝合金增材制造的发展现状与展望[J]. 宇航材料工艺,2022,52(2):76-84.
CHANG Tianxing, LIU Bin, FANG Xuewei, et al. Development Status and Prospect of Aluminum Alloy Additive Manufacturing[J]. Aerospace Materials & Technology, 2022,52(2):76-84.
[17]王震,巩维艳,祁俊峰,等. 基于增材制造的设计理论和方法研究现状[J]. 新技术新工艺, 2017(10):31-35.
WANG Zhen, GONG Weiyan, QI Junfeng, et al. Present Research on Design Philosophy and Technique about Additive Manufacturing[J]. New Technology & New Process, 2017(10):31-35.
[18]HO J Y, LEONG K C, WONG T N. Additively-manufactured Metallic Porous Lattice Heat Exchangers for Air-side Heat Transfer Enhancement[J]. International Journal of Heat and Mass Transfer, 2020, 150:119262.
[19]石立. 基于隐式曲面建模的异型三维点阵结构造型算法研究[D]. 南京:南京理工大学,2017.
SHI Li. Research on Modeling Algorithm of Irregular 3D Lattice Structure Based on Implicit Surface Modeling[D]. Nanjing:Nanjing University of Science and Technology, 2017.
[20]郑胤峥. 极小曲面点阵结构力、热性能及优化设计研究[D]. 南京:南京理工大学,2018.
ZHENG Yinzheng. Study on Structural Force, Thermal Performance and Optimal Design of Curved Lattice[D]. Nanjing:Nanjing University of Science and Technology, 2018.
[21]崔厚学,高方勇,魏青松. 3D打印在汽车制造中的应用展望[J]. 汽车工艺师,2016(9):36-41.
CUI Houxue, GAO Fangyong, WEI Qingsong. Application Prospect of 3D Printing in Automobile Manufacturing[J]. Auto Manufacturing Engineer, 2016(9):36-41.
[22]纵荣荣,李海鹏,葛广跃,等. 3D打印技术在汽车行业的应用[J]. 汽车实用技术,2022,47(11):195-199.
ZONG Rongrong, LI Haipeng, GE Guangyue, et al. Application of 3D Printing Technology in Automobile Industry[J]. Automobile Applieo Technology, 2022, 47(11):195-199.
[23]童身亮. 发动机轻量化途径及工艺创新探究[J]. 内燃机与配件,2021(5):33-34.
TONG Shenliang. Research on the Way and Technology Innovation of Light Weight Engine[J]. Internal Combustion Engine & Parts, 2021(5):33-34.
[24]ESCHENAUER H A, OLHOFF N. Topology Optimization of Continuum Structures:a Review[J]. Applied Mechanics Reviews:an Assessment of the World Literature in Engineering Sciences, 2001, 54(4):331-390.
[25]ZHOU M , ROZVANY G I N. On the Validity of ESO Type Methods in Topology Optimization[J]. Structural and Multidisciplinary Optimization, 2014, 21(1):80-83.
[26]张龙,李昂,赵云鹏,等. 一种全封闭蒙皮点阵支撑结构的优化设计与试验验证[J]. 机械工程学报, 2021, 57 (22):35-42.
ZHANG Long, LI Ang, ZHAO Yunpeng, et al. Optimal Design and Experimental Verification of an Enclosed Skin Lattice Support Structure[J]. Journal of Mechanical Engineering, 2021,57(22):35-42.
[27]SIMCHI A. Direct Laser Sintering of Metal Powders:Mechanism, Kinetics and Microstructural Features[J]. Materials Science & Engineering, A. Structural Materials:Properties, Misrostructure and Processing, 2006, A428(1/2):148-158.
[28]倪晓晴,孔德成,温莹,等. 3D打印金属材料中孔隙率的影响因素和改善方法[J]. 粉末冶金技术,2019,37(3):163-169.
NI Xiaoqing, KONG Decheng, WEN Ying, et al. Influence Factors and Improvement Methods on the Porosity of 3D Printing Metal Materials[J]. Powder Metallurgy Technology, 2019,37(3):163-169.
[29]王迪,欧远辉,窦文豪,等. 粉末床激光熔融过程中飞溅行为的研究进展[J]. 中国激光,2020,47(9):1-15.
WANG Di, OU Yuanhui, DOU Wenhao, et al. Research Progress on Spatter Behavior in Laser Powder Bed Fusion[J]. Chinese Journal of Lasers,2020,47(9):1-15.
[30]王学才,卢云,何仲云,等. 选择性激光熔化AlSi10Mg合金组织形貌及其拉伸性能[J]. 安徽工业大学学报(自然科学版),2017,34(3):234-240.
WANG Xuecai, LU Yun, HE Zhongyun, et al. Microstructure and Tensile Properties of Selective Laser Melting AlSi10Mg Alloy[J]. Journal of Anhui University of Technology(Natural Science), 2017,34(3):234-240.
[31]闫泰起,唐鹏钧,陈冰清,等. 退火温度对激光选区熔化AlSi10Mg合金微观组织及拉伸性能的影响[J]. 机械工程学报,2020,56(8):37-45.
YAN Taiqi, TANG Pengjun, CHEN Bingqing, et al. Effect of Annealing Temperature on Microstructure and Tensile Properties of AlSi10Mg Alloy Fabricated by Selective Laser Melting[J]. Journal of Mechanical Engineering, 2020,56(8):37-45.
|