[1]李虹杨,郑赟.粗糙度对涡轮叶片流动转捩及传热特性的影响[J].北京航空航天大学学报,2016,42(10):2038-2047.
LI Hongyang, ZHENG Yun. Effect of Surface Roughness on Flow Transition and Heat Transfer of Turbine Blade[J].Journal of Beijing University of Aeronautics and Astronautics, 2016,42(10):2038-2047.
[2]张宗辰,乔渭阳,白涛.叶片表面粗糙度对高负荷低压涡轮的流动影响[J].哈尔滨理工大学学报,2019,24(2):59-72.
ZHANG Zongchen, QIAO Weiyang, BAI Tao. Effects of Surface Roughness on the Flow of High-lift Low-pressure Turbine[J]. Journal of Harbin University of Science and Technology,2019,24(2):59-72.
[3]白涛,王书贤.表面粗糙度对涡轮叶片吸力面边界层的影响[J].西安工业大学学报,2016,36(8):647-651.
BAI Tao,WANG Shuxian. Effects of Surface Roughness on Layer of Suction of Turbine Blades[J]. Journal of Xian Technological University,2016,36(8):647-651.
[4]李本威,李冬,沈伟,等.涡轮叶片粗糙度对其性能衰退的影响研究[J].航空计算技术,2009,39(5):26-29.
LI Benwei,LI Dong,SHEN Wei, et al. Research on Turbinelamina Roughness Influence on Its Performance Declination[J].Aeronautical Computing Technique,2009,39(5):26-29.
[5]白涛,邹正平,张伟昊,等.前缘形状对涡轮叶栅损失影响的机理[J].航空动力学报,2014,29(6):1482-1489.
BAI Tao,ZOU Zhengping,ZHANG Weihao,et al. Mechanism of Effect of Leading-edge Geometry on the Turbine Blade Cascade Loss[J]. Journal of Aerospace Power, 2014,29(6):1482-1489.
[6]白涛,高山.高压涡轮前缘几何形状对性能影响分析[J].兵器装备工程学报,2018,39(9):139-143.
BAI Tao,GAO Shan. Influence of Leading Edge Shape on High Pressure Turbine[J]. Journal of Ordnance Equipment Engineering,2018,39(9):139-143.
[7]BENNER M W, SJOLANDER S A, MOUSTAPHA S H. Influence of Leading-edge Geometry on Profile Losses in Turbines at Off-design Incidence:Experimental Results and an Improved Correlation[J]. Journal of Turbomachinery, 1997, 119(2):193-200.
[8]HB 5647—1998 叶片叶型的标注、公差与叶身表面粗糙度[S]. 北京:中国航空工业总公司,1999.
HB 5647—1998 Marking, Tolerances and Surface Roughness of the Leaf Blade [S]. Beijing:Aviation Industry Corporation of China,1999.
[9]裴景东,汪文虎,王姝,等. 叶片基元叶型椭圆形前缘拟合方法[J].计算机工程与应用,2015,51(3):243-246.
PEI Jingdong, WANG Wenhu, WANG Shu, et al. Elliptical Leading Edge Fitting Strategy of Elementary Blade Profile [J].Computer Engineering and Applications, 2015,51(3):243-246.
[10]张力宁,张定华. 叶片前缘高精度重建方法研究[J].航空动力学报,2006,21(4):722-726.
ZHANG Lining, ZHANG Dinghua. High-precision Reconstruction of Blade Leading Edge[J]. Journal of Aerospace Power, 2006,21(4):722-726.
[11]程云勇,王嫔,刘鹏军,等. 基于误差控制的薄壁叶片椭圆弧形前后缘建模方法[J].计算机辅助设计与图形学学报,2016,28(1):155-161.
CHENG Yunyong, WANG Pin, LIU Pengjun, et al. An Error Control Based Modeling Method for Ellipse Leading Edge and Trailing Edge Reconstruction of Thin-walled Blade[J]. Journal of Computer-Aided Design & Computer Graphics, 2016,28(1):155-161.
[12]鲍鸿,胡忠,徐维超,等. 基于自适应迭代最小二乘的叶片后缘参数估计[J].测控技术,2016,35(4):39-42.
BAO Hong, HU Zhong, XU Weichao, et al. Parameter Estimation of Blade Trailing Edge Based on Adaptive and Iterative Least-square[J]. Measurement & Control Technology, 2016,35(4):39-42.
[13]淮文博,唐虹,史耀耀,等. 砂布轮柔性抛光力的建模与参数优化[J]. 航空学报,2016,37(11):3535-3545.
HUAI Wenbo, TANG Hong, SHI Yaoyao, et al. Modelling and Parameter Optization of Flexible Polishing Force for Abrasive Cloth Wheel[J]. Acta Aeronautica et Astronautica Sinica, 2016,37(11):3535-3545.
[14]毕超,郝雪,房建国,等. 基于柔性砂轮的叶片前后缘磨削技术研究[J]. 现代制造工程,2019(12):106-111.
BI Chao, HAO Xue, FANG Jianguo, et al. Study on Application of Flexible Grinding Wheels in Grinding of Blade Edges[J]. Modern Manufacturing Engineering, 2019(12):106-111.
[15]LYU Y, PENG Z, QU C, et al. An Adaptive Trajectory Planning Algorithm for Robotic Belt Grinding of Blade Leading and Trailing Edges Based on Material Removal Profile Model[J]. Robotics and Computer-Integrated Manufacturing, 2020, 66:101987.
[16]WANG WEI, YUN CHAO. A Path Planning Method for Robotic Belt Surface Grinding[J]. Chinese Journal of Aeronautics,2011,24(4):520-526.
[17]BALLARD D H. Generalizing the Hough Transform to Detect Arbitrary Shapes[J]. Pattern Recognition,1981,13(2):111-122.
[18]JOHNSON K L. Contact Mechanics[M]. Cambridge:Cambridge University Press, 1985.
[19]金宏平,陈建国. 刚性球与平面弹性接触的临界参数计算[J]. 机械传动,2013,37(3):49-51.
JIN Hongping, CHEN Jianguo. Calculation of the Critical Parameters for the Elastic Contact of Rigid Sphere and Plane[J]. Journal of Mechanical Transmission, 2013,37(3):49-51.
[20]官春平,金宏平. 球与平面弹塑性接触的计算分析[J]. 轴承,2014(8):5-8.
GUAN Chunping, JIN Hongping. Calculation Analysis for Elastic-plastic Contact Between Ball and Plane[J]. Bearing, 2014(8):5-8.
[21]YU Weiping, BLANCHARD J P. An Elastic-plastic Indentation Model and Its Solutions[J]. Journal of Materials Research, 1996,11(9):2358-2367.
[22]刘正林.摩擦学原理[M].北京:高等教育出版社,2007:276.
LIU Zhenglin. Principles of Tribology[M].Beijing:Higher Education Press,2007:276.
[23]CHEN Zhen, YAN Rui, LI Feng, et al. SurfaceMorphology Measurement and Modeling of Belt Flapwheel[J]. Aeronautical Manufacturing Technology, 2022, 65(4):63-72.
[24]胡智杰,曹诗宇,黄文健,等.钛合金材料页轮磨抛材料去除深度模型[J].金刚石与磨料磨具工程,2021,41(6):18-23.
HU Zhijie, CAO Shiyu, HUANG Wenjian, et al. Material Removal Depth Model of Titanium Alloy Ground by Flag Wheel[J]. Diamond & Abrasives Engineering, 2021, 41(6):18-23.
|