[1]李丽, 张根保. “高档数控机床的高端制造模式”(二):国产数控机床的竞争格局研究[J]. 计算机集成制造系统, 2023, 29(4):1346-1356.
LI Li, ZHANG Genbao. The Competitive Pattern of Domestic CNC Machine Tools[J]. Computer Integrated Manufacturing Systems, 2023, 29(4):1346-1356.
[2]刘强. 数控机床发展历程及未来趋势[J]. 中国机械工程, 2021, 32(7):757-770.
LIU Qiang. Development History and Future Trends of Numerical Control Machine Tools[J]. China Mechanical Engineering, 2021, 32(7):757-770.
[3]SIHAG N, SANGWAN K S. A Systematic Literature Review on Machine Tool Energy Consumption[J]. Journal of Cleaner Production, 2020, 275:123125.
[4]李聪波, 余必胜, 肖溱鸽, 等. 考虑刀具磨损的数控车削批量加工工艺参数节能优化方法[J]. 机械工程学报, 2021, 57(1):217-229.
LI Congbo, YU Bisheng, XIAO Zhenge, et al. A Cutting Parameter Energy-saving Optimization Method for CNC Turning Batch Processing Consi-dering Tool Wear[J]. Journal of Mechanical Engineering, 2021, 57(1):217-229.
[5]BRILLINGER M, WUWER M, HADI M A, et al. Energy Prediction for CNC Machining with Machine Learning[J]. CIRP Journal of Manufacturing Science and Technology, 2021, 35:715-723.
[6]PANGESTU P, PUJIYANTO E, ROSYIDI C N, et al. Multi-objective Cutting Parameter Optimization Model of Multi-pass Turning in CNC Machines for Sustainable Manufacturing[J]. Heliyon, 2021, 7:e06043.
[7]SHI K N, REN J X, WANG S B, et al. An Improved Cutting Power-based Model for Evaluating Total Energy Consumption in General End Milling Process[J]. Journal of Cleaner Production, 2019, 231:1330-1341.
[8]陈行政, 李聪波, 吴磊, 等. 面向能耗的多刀具孔加工刀具直径及工艺参数集成优化模型[J]. 机械工程学报, 2018, 54(15):221-231.
CHEN Xingzheng, LI Congbo, WU Lei, et al. Integrating Optimization of Cutter Diameter and Cutting Parameters for Energy-aware Multi-tool Hole Machining[J]. Journal of Mechanical Engineering, 2018, 54(15):221-231.
[9]张华, 史梦成, 鄢威, 等. 多特征数据驱动的数控铣削加工能耗预测研究[J]. 机械设计与制造, 2022, 379(9):244-248.
ZHANG Hua, SHI Mengcheng, YAN Wei, et al. Research on Multi-feature Data-driven for Energy Consumption Prediction of CNC milling[J]. Machinery Design & Manufacture, 2022, 379(9):244-248.
[10]曾国治, 魏子清, 岳宝, 等. 基于CNN-RNN组合模型的办公建筑能耗预测[J]. 上海交通大学学报, 2022, 56(9):1256-1261.
ZENG Guozhi, WEI Ziqing, YUE Bao, et al. Energy Consumption Prediction of Office Buildings Based on CNN-RNN Combined Model[J]. Journal of Shanghai Jiao Tong University, 2022, 56(9):1256-1261.
[11]LIU S, HU Y, LI C, et al. Machinery Condition Prediction Based on Wavelet and Support Vector Machine[J]. Journal of Intelligent Manufacturing, 2017, 28:1045-1055.
[12]HE Y, WU P, LI Y, et al. A Generic Energy Prediction Model of Machine Tools Using Deep Learning Algorithms[J]. Applied Energy, 2020, 275:115402.
[13]XIE J, CAI W, DU Y, et al. Modelling Approach for Energy Efficiency of Machining System Based on Torque Model and Angular Velocity[J]. Journal of Cleaner Production, 2021, 293:126249.
[14]单增海, 李志远, 张旭, 等. 基于多传感器信息融合和多粒度级联森林模型的液压泵健康状态评估[J]. 中国机械工程, 2021, 32(19):2374-2382.
SHAN Zenghai, LI Zhiyuan, ZHANG Xu, et al. Health Status Assessment of Hydraulic Pumps Based on Multi-sensor Information Fusion and Multi-grained Cascade Forest Model[J]. China Mechanical Engineering, 2021, 32(19):2374-2382.
[15]汪千程, 苏春, 文泽军. 基于协整分析的风力机多工况监测与故障诊断[J]. 中国机械工程, 2022, 33(13):1596-1603.
WANG Qiancheng, SU Chun, WEN Zejun. Multi-condition Monitoring and Fault Diagnosis of Wind Turbines Based on Cointegration Analysis[J]. China Mechanical Engineering, 2022, 33(13):1596-1603.
[16]王久健, 杨绍普, 刘永强, 等. 一种基于空间卷积长短时记忆神经网络的轴承剩余寿命预测方法[J]. 机械工程学报, 2021, 57(21):88-95.
WANG Jiujian, YANG Shaopu, LIU Yongqiang, et al. A Method of Bearing Remaining Useful Life Estimation Based on Convolutional Long Short-term Memory Neural Network[J]. Journal of Mechanical Engineering, 2021, 57(21):88-95.
|