[1]李小强, 杨永真, 李东升, 等. 型材数控拉弯装备技术研究进展[J]. 锻压技术, 2017, 42(4):1-7.
LI Xiaoqiang, YANG Yongzhen, LI Dongsheng, et al. Research Progress on Profile CNC Stretch Bend-ing Equipment[J]. Forging & Stamping Techno-logy, 2017, 42(4):1-7.
[2]朱知寿. 新型航空高性能钛合金材料技术研究与发展[M]. 北京:航空工业出版社, 2013.
ZHU Zhishou. Research and Development of New Aerospace High Performance Titanium Alloy Materials Technology[M]. Beijing:Aviation Industry Press, 2013.
[3]高嵩, 于长春, 梁继才, 等. 铝型材多点三维拉压复合弯曲成形工艺[J].机械工程学报, 2019, 55(20):152-159.
GAO Song, YU Changchun, LIANG Jicai, et al. Multi-points 3D Stretch-press Bending Technology for Aluminum Profile[J]. Journal of Mechanical Engineering, 2019, 55(20):152-159.
[4]高嵩, 孙荧力, 李奇涵, 等. 非对称高铁列车车头窗口下梁的三维拉压复合弯曲精确成形[J].机械工程学报, 2021, 57(18):222-228.
GAO Song, SUN Yingli, LI Qihan, et al. Precision Forming of the Asymmetric 3D Stretch-press Bend-ing Parts for the Windows of the High Speed Trains[J]. Journal of Mechanical Engineering, 2021, 57(18):222-228.
[5]屈聪,孟智娟,赵亮,等.基于变弹性模量的Ti-6Al-4V板材五点弯曲回弹预测[J].中国机械工程,2022,33(16):1991-1999.
QU Cong, MENG Zhijuan, ZHAO Liang, et al. Prediction of Five-point Bending Springback of Ti-6Al-4V Plates Based on Variable Elastic Modulus[J]. China Mechanical Engineering, 2022,33(16):1991-1999.
[6]曾元松. 航空钣金成形技术[M]. 北京:航空工业出版社, 2014.
ZENG Yuansong. Aerospace Sheet Metal Forming Technology[M]. Beijing:Aviation Industry Press, 2014.
[7]GUO Guiqiang, LI Dongsheng, LI Xiaoqiang, et al. Finite Element Simulation and Process Optimization for Hot Stretch Bending of Ti-6Al-4V Thin-walled Extrusion[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(5):1707-1719.
[8]肖军杰, 李东升, 李小强, 等. 钛合金薄壁零件数控热拉伸蠕变复合成形研究进展[J]. 稀有金属材料与工程, 2013, 42(12):2629-2635.
XIAO Junjie, LI Dongsheng, LI Xiaoqiang, et al. State of the Art of Hot Stretch-creep Compound Forming for Thin-wall Titanium Alloy Components[J]. Rare Metal Materials and Engineering, 2013, 42(12):2629-2635.
[9]王玉庭. 钛合金电阻加热拉弯成形工艺研究[J]. 宇航材料工艺, 1986(2):4-7.
WANG Yuting. Research on the Stretch-bending Process of Titanium Alloy by Resistance Heating[J]. Aerospace Materials & Technology, 1986(2):4-7.
[10]DENG Tongsheng, LI Dongsheng, LI Xiaoqiang. Temperature Variation Model of Titanium Alloy L-angle Profile in Hot Stretch Forming with Resistance Heating[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(5):2105-2110.
[11]DENG Tongsheng, LI Dongsheng, LI Xiaoqiang, et al. Hot Stretch Bending and Creep Forming of Titanium Alloy Profile[J]. Procedia Engineering, 2014, 81:1792-1798.
[12]刘天骄, 王永军, 杨凯, 等. Ti-6Al-4V钛合金型材电热拉弯成形极限仿真方法[J]. 锻压技术, 2017, 42(4):117-122.
LIU Tianjiao, WANG Yongjun, YANG Kai, et al. FEM of Forming Limit in Electric-thermal Stretch Bending for Ti-6Al-4V Titanium Alloy Profile[J]. Forging & Stamping Technology, 2017, 42(4):117-122.
[13]孙宝龙, 王永军, 刘宝胜, 等. 钛合金挤压型材自阻电加热拉弯成形工装设计[J]. 模具工业, 2014, 40(12):40-43.
SUN Baolong, WANG Yongjun, LIU Baosheng, et al. Tooling Design of Self resistance Electrical Heating Stretch Bending Forming for Titanium Alloy Extrusion Profile[J]. Die & Mould Industry, 2014, 40(12):40-43.
[14]MA J, WELO T. Analytical Springback Assessment in Flexible Stretch Bending of Complex Shapes[J]. International Journal of Machine Tools Manufacture, 2021, 160:103653.
[15]GAO Song, SANG Ye, LI Qihan, et al. Constitutive Modeling and Microstructure Research on the Deformation Mechanism of Ti-6Al-4V Alloy under Hot Forming Condition[J]. Journal of Alloys Compounds, 2022, 892:162128.
[16]BACHMANN F, HIELSCHER R, SCHAEBEN H. Texture Analysis with MTEX-free and Open Source Software Toolbox[J]. Solid State Phenomenu, 2010, 160:63-68.
[17]WU Yong, FAN Ronglei, CHEN Minghe, et al. High-temperature Anisotropic Behaviors and Microstructure Evolution Mechanisms of a Near-α Ti-alloy Sheet[J]. Materials Science and Engineering:A, 2021, 820:141560.
|