[1]刘永长. 内燃机原理[M]. 武汉:华中科技大学出版社,2008.
LIU Yongchang. Principles of Internal Combustion Engine[M]. Wuhan:Huazhong University of Science and Technology Press, 2008.
[2]侯晓博, 李聪波, 杨秒, 等. 考虑设备多状态的缸盖生产线性能分析与优化[J]. 中国机械工程, 2022, 33(21):2613-2622.
HOU Xiaobo, LI Congbo, YANG Miao, et al. Performance Analysis and Optimization of Cylinder Head Production Lines Considering Multiple States of Equipment[J]. China Mechanical Engineering, 2022, 33(21):2613-2622.
[3]郭冰彬, 詹樟松, 彭博, 等. 铝合金气缸盖低周热疲劳寿命计算评估[J].内燃机学报, 2017, 35(2):164-170.
GUO Bingbin, ZHANG Zhangsong, PENG Bo, et al. Low-Cycle Thermal Fatigue Life Calculation of an Aluminum Alloy Cylinder Head[J]. Transactions of CSICE, 2017, 35(2):164-170.
[4]蔡艳平, 范宇, 陈万, 等. 改进时频分析和特征融合在内燃机故障诊断中的应用[J]. 中国机械工程, 2020, 31(16):1901-1911.
CAI Yanping, FAN Yu, CHEN Wan, et al. Applications of Improved Time-frequency Analysis and Feature Fusion in Fault Diagnosis of Cylinder Head Production Engines[J]. China Mechanical Engineering, 2020, 31(16):1901-1911.
[5]SEHITOGLU H. Thermomechanical Fatigue Behavior of Materials[M]. Ann Arbor:ASTM Special Technical Publication, 1993.
[6]闫明, 孙志礼, 杨强, 等. 蠕变-热疲劳交互作用的力学机理[J]. 机械工程学报, 2009, 45(1):111-114.
YAN Ming, SUN Zhili, YANG Qiang, et al. Mechanical Mechanism of Creep-thermal Fatigue Interaction[J]. Journal of Mechanical Engineering, 2009, 45(1):111-114.
[7]SHALEV M, ZVIRIN Y, STOTTER A. Experimental and Analytical Investigation of the Heat Transfer and Thermal Stresses in a Cylinder Head of a Diesel Engine[J]. International Journal of Mechanical Sciences, 1983, 25(7):471-483.
[8]GRIEB M B, CHRIST H J, PLEGE B. Thermo-mechanical Fatigue of Cast Aluminium Alloys for Cylinder Head Applications—Experimental Characterization and Life Prediction[J]. Procedia Engineering, 2010, 2(1):1767-1776.
[9]ZHANG Mengxiao, PANG Jianchao, QIU Yu, et al. Thermo-mechanical Fatigue Property and Life Prediction of Vermicular Graphite Iron[J]. Materials Science and Engineering A, 2017, 698:63-72.
[10]JING Guoxi, ZHANG Mengxiao, QU Shen, et al. Investigation into Diesel Engine Cylinder Head Failure[J]. Engineering Failure Analysis, 2018, 90:36-46.
[11]CHEN Yu, PANG Jianchao, ZOU Chenglu, et al. High-temperature Fatigue Damage Mechanism and Strength Prediction of Vermicular Graphite Iron[J]. International Journal of Fatigue, 2023, 168:107477.
[12]邹萍萍, 景国玺, 曾小春, 等. 基于Sehitoglu模型的发动机气缸盖热机疲劳寿命预测[J]. 机械强度, 2021, 43(5):1184-1190.
ZOU Pingping, JING Guoxi, ZENG Xiaochun, et al. Thermal-Mechanical Fatigue Prediction of Engine Cylinder Head Based on the Sehitoglu Model[J]. Journal of Mechanical Strength, 2021, 43(5):1184-1190.
[13]曹炼博. 气缸盖热机耦合疲劳寿命试验研究[D]. 北京:北京理工大学, 2015.
CAO Lianbo. Experimental Research on Thermo-mechanical Fatigue Life of Cylinder Head[D]. Beijing:Beijing Institute of Technology, 2015.
[14]丛建臣, 倪培相, 孙军, 等. 内燃机曲轴扭转疲劳强度试验研究与分析[J]. 中国机械工程, 2022, 33(18):2197-2204.
CONG Jianchen, NI Peixiang, SUN Jun, et al. Experimental Research and Analysis on Torsional Fatigue Strength of Engine Crankshafts[J]. China Mechanical Engineering, 2022, 33(18):2197-2204.
[15]RAHMAN M M, ARIFFIN A K, ABDULLAH S, et al. Finite Element Based Fatigue Life Prediction of Cylinder Head for Two-stroke Linear Engine Using Stress-life Approach[J]. Journal of Applied Sciences, 2008, 8(19):3316-3327.
[16]THOMAS J J, VERGER L, BIGNONNET A, et al. Thermomechanical Design in the Automotive Industry[J]. Fatigue and Fracture of Engineering Materials and Structures, 2010, 27(10):887-895.
[17]刘健, 吕继组, 计时鸣. 柴油机缸内辐射换热的多维数值模拟研究[J]. 机械工程学报, 2009, 45(12):311-317.
LIU Jian, LYU Jizu, JI Shiming. Study on Multi-Dimensional Numerical Simulation of In-Cylinder Radiation Heat Transfer of Diesel Engine[J]. Journal of Mechanical Engineering, 2009, 45(12):311-317.
[18]张卫正, 原彦鹏, 郭良平,等. 高功率密度柴油机设计问题的仿真[J]. 兵工学报, 2006, 27(5):775-778.
ZHANG Weizheng, YUAN Yanpeng, GUO Liangping, et al. Main Causes of Thermal Stress and Solving Methods for Heated Components of Engines[J]. Acta Armamentarii, 2006, 27(5):775-778.
[19]ZIEHER F, LANGMAYR F, ENNEMOSER A, et al. Advanced Thermal Mechanical Fatigue Life Simulation of Cylinder Heads[C]∥ABAQUS Users Conference. Boston, 2004:7964185.
[20]KURODA Y, IGA A , SEO K. Consideration on Regard to Fatigue Safety Life in Operating Condition of Diesel Engine Cylinder Head[J]. Transactions of the Japan Society of Mechanical Engineers B, 2004, 70(695):1890-1898.
[21]盖洪武, 程颖, 姚秀功. 柴油机气缸盖结构参数多目标优化[J]. 汽车工程, 2014, 36(7):828-832.
GAI Hongwu, CHENG Ying, YAO Xiugong. Multi-objective Optimization for the Structure Parameters of Cylinder Head in a Diesel Engine[J]. Automotive Engineering, 2014, 36(7):828-832.
[22]NEU R W, SEHITOGLU H. Thermomechanical Fatigue, Oxidation, and Creep:Part Ⅰ. Damage Mechanisms[J].Metallurgical Transactions A, 1989, 20(9):1755-1767.
[23]NEU R W, SEHITOGLU H. Thermomechanical Fatigue, Oxidation, and Creep:Part Ⅱ. Life Prediction[J]. Metallurgical Transactions A, 1989, 20(9):1769-1783.
[24]YANG Wenjun, PANG Jianchao, WANG Lei, et al. Thermo-mechanical Fatigue Life Prediction Based on the Simulated Component of Cylinder Head[J].Engineering Failure Analysis, 2022, 135:106105.
[25]ZHANG Qing, ZUO Zhengxing, LIU Jinxiang. Failure Analysis of a Diesel Engine Cylinder Head Based on Finite Element Method[J]. Engineering Failure Analysis, 2013, 34:51-58.
[26]柴油机设计手册编辑委员会. 柴油机设计手册[M]. 北京:机械工业出版社, 1984.
Editorial Board of Diesel Engine Design Manual. Diesel Engine Design Manual[M]. Beijing:China Machine Press, 1984.
[27]CHERKAEV A. Variational Methods for Structural Optimization[M]. New York:Springer, 2000.
[28]CHAPMAN J L, LU L, ANDERSON-COOK C M. Process Optimization for Multiple Responses Utilizing the Pareto Front Approach[J]. Quality Engineering, 2014, 26(3):253-268.
[29]JENSEN W A. Response Surface Methodology:Process and Product Optimization Using Designed Experiments 4th Edition[J]. Journal of Quality Technology, 2017, 49(2):186-188.
[30]LU L, ANDERSON-COOK C M, LIN D. Optimal Designed Experiments Using a Pareto Front Search for Focused Preference of Multiple Objectives[J]. Computational Statistics and Data Analysis, 2014, 71:1178-1192.
[31]PAKALE P N. Review on Cylinder Head Design for Swirl Optimization[J]. International Journal of Engineering and Technical Research, 2020, 9(9):232-236.
|