[1]MAO X, YUK H, ZHAO X. Hydration and Swelling of Dry Polymers for Wet Adhesion[J]. Journal of the Mechanics and Physics of Solids, 2020, 137:103863.
[2]杨亮,孙明杰.聚碳酸酯振动切削温度仿真与试验研究[J].工具技术,2021,55(11):49-52.
YANG Liang, SUN Mingjie. Simulation and Experimental Study on Vibration Cutting Temperature of Polycarbonate[J]. Tool Technology,2021,55(11):49-52.
[3]刘逢博,董如永.聚碳酸酯(PC)材料的精密加工工艺的研究和应用[J].机电产品开发与创新,2009,22(6):188-190.
LIU Fengbo, DONG Ruyong. Research and Application of Precision Machining Technology of Polycarbonate (PC) Material[J]. Mechatronics Development and Innovation, 2009,22(6):188-190.
[4]袁凯. 超低温加工用液氮传输调控系统研制[D].大连:大连理工大学,2017.
YUAN Kai. Development of Liquid Nitrogen Transfer Control System for Ultra-low Temperature Processing[D]. Dalian:Dalian University of Technology,2017.
[5]SHOKRANI A, DHOKIA V, MUOZ-ESCALONA P, et al. State-of-the-art Cryogenic Machining and Processing[J]. International Journal of Computer Integrated Manufacturing, 2013, 26(7):616-648.
[6]BALAJI V, RAVI S, CHANDRAN P N, et al. Review of the Cryogenic Machining in Turning and Milling Process[J]. Int. J. Res. Eng. Technol., 2015, 4(10):38-42.
[7]JAWAHIR I S, ATTIA H, BIERMANND, et al. Cryogenic Manufacturing Processes[J]. CIRP annals, 2016, 65(2):713-736.
[8]KHORAN M, AMIRABADI H, AZARHOUSHANG B. The Effects of Cryogenic Cooling on the Grinding Process of Polyether Ether Ketone (PEEK)[J]. Journal of Manufacturing Processes, 2020, 56:1075-1087.
[9]WANG Y, HAN L, LIU K, et al. Optimization of Jet Parameters for Minimizing Surface Roughness in Cryogenic Milling of Ti-6Al-4V[J]. Journal of Manufacturing Science and Engineering, 2021, 143(5):713-736.
[10]侯博,谢浔,崔超,等.石英纤维增强聚酰亚胺复合材料超低温铣削试验[J].宇航材料工艺,2020,50(3):56-61.
HOU Bo, XIE Xun, CUI Chao, et al. Milling Experiment of Quartz Fiber Reinforced Polyimide Composites at Ultra-low Temperature[J]. Aerospace Materials Technology, 2020, 50(3):56-61.
[11]王永青,郭东明,郭立杰,等.超低温加工技术的研究现状及发展趋势[J].上海航天,2020,37(3):11-21.
WANG Yongqing, GUO Dongming, GUO Lijie, et al. Research Status and Development Trend of Ultra-low Temperature Machining Technology[J]. Shanghai Aerospace, 2019,37(3):11-21.
[12]SHIH A J, LEWIS M A, STRENKOWSKI J S. End Milling of Elastomers—Fixture Design and Tool Effectiveness for Material Removal[J]. J. Manuf. Sci. Eng., 2004, 126(1):115-123.
[13]KAKINUMA Y, KIDANI S, AOYAMA T. Ultra-precision Cryogenic Machining of Viscoelastic Polymers[J]. CIRP Annals, 2012, 61(1):79-82.
[14]SONG K, GANG M G, JUN M B G, et al. Cryogenic Machining of PDMS Fluidic Channel Using Shrinkage Compensation and Surface Roughness Control[J]. International Journal of Precision Engineering and Manufacturing, 2017, 18:1711-1717.
[15]DHOKIA V G, NEWMAN S T, CRABTREE P, et al. A Methodology for the Determination of Foamed Polymer Contraction Rates as a Result of Cryogenic CNC Machining[J]. Robotics and Computer-Integrated Manufacturing, 2010, 26(6):665-670.
[16]YILDIZ Y, NALBANT M. A Review of Cryogenic Cooling in Machining Processes[J]. International Journal of Machine Tools and Manufacture, 2008, 48(9):947-964.
[17]华幼卿, 金日光. 高分子物理[M]. 4版.北京:化学工业出版社, 2013.
HUA Youqing, JIN Liangliang. Polymer Physics[M]. 4th ed. Beijing:Chemical Industry Press, 2013.
[18]励杭泉, 张晨. 聚合物物理学[M]. 北京:化学工业出版社, 2007.
LI Hangquan, ZHANG Chen. Polymer Physics[M]. Beijing:Chemical Industry Press, 2007.
[19]ARGON A S, HANNOOSH J G. Initiation of Crazes in Polystyrene[J]. Philosophical Magazine, 1977, 36(5):1195-1216.
[20]WANG Y, WANG S, LIU K, et al. Effect of Indirect Cryogenic Cooling on the Machining Accuracy and Tool Vibration in the Turning of Polysulfone[J]. Journal of Manufacturing Science and Engineering:Transactions of the ASME, 2022(6):144.
[21]WANG Y, LI J, LIU K, et al. Experiment and Numerical Study of Chip Formation Mechanism during Cryogenic Machining of Ti-6Al-4V Alloy[J]. Journal of Manufacturing Processes, 2022, 84:1246-1257.
[22]何平笙. 高聚物的力学性能[M]. 2版. 合肥:中国科学技术大学出版社, 2008.
HE Pingsheng. Mechanical Properties of Polymers[M]. 2nd ed. Hefei:University of Science and Technology of China Press, 2008.
|