[1]李方义,戚小霞,李燕乐,等. 盾构机关键零部件再制造修复技术综述[J]. 中国机械工程, 2021, 32(7):820-831.
LI Fangyi, QI Xiaoxia, LI Yanle, et al. Review of Remanufacturing Repair Technology for Key Components of Shield Machine[J]. China Mechanical Engineering, 2021, 32(7):820-831.
[2]李方义,李振,王黎明,等. 内燃机增材再制造修复技术综述[J]. 中国机械工程, 2019, 30(9):1119-1127.
LI Fangyi, LI Zhen, WANG Liming, et al. Review of Additive Remanufacturing Repair Technology for Internal Combustion Engine[J]. China Mechanical Engineering, 2019, 30(9):1119-1127.
[3]WENG Fei, CHEN Chuanzhong, YU Huijun. Research Status of Laser Cladding on Titanium and Its Alloys: a Review[J]. Materials & Design, 2014, 58:412-425.
[4]李广琪,朱刚贤,王丽芳,等. 离焦量对中空环形激光熔覆层温度场及应力场的影响[J]. 中国机械工程, 2021, 32(5):587-593.
LI Guangqi, ZHU Gangxian, WANG Lifang, et al. Effect of Defocusing Distance on Temperature Field and Stress Field of Hollow Ring Laser Cladding Layer[J]. China Mechanical Engineering, 2021, 32(5):587-593.
[5]WANG Dengzhi, HU Qianwu, ZENG Xiaoyan. Residual Stress and Cracking Behaviors of Cr13Ni5Si2 Based Composite Coatings Prepared by Laser-induction Hybrid Cladding[J]. Surface and Coatings Technology, 2015, 274:51-59.
[6]张天刚,孙荣禄. TC4表面激光熔覆Ni60涂层裂纹有限元分析[J]. 金属热处理, 2018, 43(3):190-194.
ZHANG Tiangang, SUN Ronglu. Finite Element Analysis of Crack in Laser Clad Ni60 Coating on TC4 Surface[J]. Heat Treatment of Metals, 2018, 43(3):190-194.
[7]ZHU Ping, LI Peng, GE Fangfang, et al. Effect of Residual Stress on the Wear Behavior of Magnetron Sputtered V-Al-N Coatings Deposited at the Substrate Temperature <200 ℃[J]. Materials Chemistry and Physics. 2023, 296:127218.
[8]郭华锋,李菊丽,孙涛,等. WC颗粒增强Ni基涂层的残余应力及耐磨性能[J]. 金属热处理, 2014, 39(2):72-76.
GUO Huafeng, LI Juli, SUN Tao, et al. Residual Stress and Wear Resistance of WC Particle Reinforced Ni-based Coating[J]. Metal Heat Treatment, 2014, 39(2):72-76.
[9]CRUZ V, CHAO Q, BIRBILIS N, et al. Electrochemical Studies on the Effect of Residual Stress on the Corrosion of 316L Manufactured by Selective Laser Melting[J]. Corrosion Science. 2020, 164:108314.
[10]FARAHMAND P, KOVACEVIC R, An Experimental Numerical Investigation of Heat Distribution and Stress Field in Single- and Multi-track Laser Cladding by a High-power Direct Diode Laser[J]. Optics and Laser Technology, 2014, 63:154-168.
[11]ZHAO Yu, YU Tianbiao, SUN Jiayu, et al. Effect of Laser Cladding on Forming Microhardness and Tensile Strength of YCF101 Alloy Powder in the Different Full Lap Joint Modes[J]. Journal of Alloys and Compounds. 2020, 820:150230.
[12]KRZYZANOWSKI M, BAJDA S, LIU Yijun, et al. 3D Analysis of Thermal and Stress Evolution during Laser Cladding of Bioactive Glass Coatings[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 59:404-417.
[13]VUNDRU C, PAUL S, SINGH R, et al. Numerical Analysis of Multi-layered Laser Cladding for Die Repair Applications to Determine Residual Stresses and Hardness[J]. Procedia Manufacturing, 2018, 26:952-961.
[14]王丽芳,孙亚新,朱刚贤,等. 激光熔覆316L不锈钢残余应力工艺参数的优化模拟[J]. 应用激光, 2019, 39(3):376-380.
WANG Lifang, SUN Yaxin, ZHU Gangxian, et al. Optimization Simulation of Process Parameters for Laser Cladding Residual Stress of 316L Stainless Steel[J]. Applied Lasers, 2019, 39(3):376-380.
[15]MENG Guiru, ZHANG Jingdong, ZHU Lida, et al. Effect of Process Optimization on Laser Additive Manufacturing of Inconel 718 Alloy Based on Finite Element Analysis: Thermal and Structural Evaluation[J]. Optics and Laser Technology, 2023, 162:109261.
[16]古昭昭. 同轴送粉激光熔覆热力耦合数值模拟及工艺参数优化研究[D].沈阳:东北大学,2018.
GU Zhaozhao. Thermal-mechanical Coupling Numerical Simulation and Process Parameters Optimization of Coaxial Powder Feeding Laser Cladding[D]. Shenyang:Northeastern University, 2018.
[17]赵元. 航空发动机变曲率叶片的激光熔覆修复技术数值仿真模拟研究[D].秦皇岛:燕山大学,2021.
ZHAO Yuan. Numerical Simulation of Laser Cladding Repair Technology for Variable Curvature Blade of Aeroengine[D]. Qinhuangdao: Yanshan University, 2021.
[18]蔡春波,李美艳,韩彬,等.不同预热温度下宽带激光熔覆铁基涂层数值模拟[J].应用激光,2017,37(1):66-71.
CAI Chunbo, LI Meiyan, HAN Bin, et al. Numerical Simulation of Fe-based Coating by Wide-band Laser Cladding at Different Preheating Temperatures[J]. Applied Lasers, 2017, 37(1):66-71.
[19]LI Zhonghua, XU Renjun, ZHANG Zhengwen, et al. The Influence of Scan Length on Fabricating Thin-walled Components in Selective Laser Melting[J]. International Journal of Machine Tools and Manufacture, 2017, 126:1-12.
[20]陈昌棚. 基于有限元模拟的激光选区熔化成形TC4应力及变形研究[D].武汉:华中科技大学,2020.
CHEN Changpeng. Study on Stress and Deformation of TC4 Formed by Selective Laser Melting Based on Finite Element Simulation[D]. Wuhan: Huazhong University of Science and Technology, 2020.
[21]顾建强. 激光熔覆残余应力场的数值模拟[D].杭州:浙江工业大学,2010.
GU Jianqiang. Numerical Simulation of Residual Stress Field in Laser Cladding[D]. Hangzhou: Zhejiang University of Technology, 2010.
[22]WAQAR S, GUO Kai, SUN Jie. Evolution of Residual Stress Behavior in Selective Laser Melting (SLM) of 316L Stainless Steel through Preheating and In-situ Re-scanning Techniques[J]. Optics & Laser Technology, 2022, 149:107806.
[23]YU Tianyu, LI Ming, BREAUX A, et al. Experimental and Numerical Study on Residual Stress and Geometric Distortion in Powder Bed Fusion Process[J]. Journal of Manufacturing Processes, 2019, 46:214-224.
[24]HAO Mingzhong, SUN Yuwen. A FEM Model for Simulating Temperature Field in Coaxial Laser Cladding of TI6AL4V Alloy Using an Inverse Modeling Approach[J]. International Journal of Heat and Mass Transfer, 2013, 64:352-360.
[25]LIU Shiwen, ZHU Haihong, PENG Gangyong, et al. Microstructure Prediction of Selective Laser Melting AlSi10Mg Using Finite Element Analysis[J]. Materials and Design,2018,142:319-328.
[26]YIN Jie, ZHU Haihong, KE Linda, et al. A Finite Element Model of Thermal Evolution in Laser Micro Sintering[J]. The International Journal of Advanced Manufacturing Technology, 2015, 83:1847-1859.
[27]XIA Mujian, GU Dongdong, YU Guanqun, et al. Selective Laser Melting 3D Printing of Ni-based Superalloy: Understanding Thermodynamic Mechanisms[J]. Science Bulletin, 2016, 61:1013-1022.
[28]TAMANNA N, KABIR I R, NAHER S. Thermo-mechanical Modelling to Evaluate Residual Stress and Material Compatibility of Laser Cladding Process Depositing Similar and Dissimilar Material on Ti6Al4V Alloy[J]. Thermal Science & Engineering Progress, 2022, 31:101283.
[29]HUANG Shuyu, QIAO Shangfei, SHAO Chendong, et al. Study on Residual Stress Evolution of Laser Cladding Low Chromium Carbon Alloy on Low-pressure Rotor[J]. Journal of Manufacturing Processes, 2023, 85:31-42.
[30]任仲贺,武美萍,唐又红,等.基于热力耦合的激光熔覆数值模拟与实验研究[J].激光与光电子学进展, 2019, 56(5):176-185.
REN Zhonghe, WU Meiping, TANG Youhong, et al. Numerical Simulation and Experimental Research of Laser Cladding Based on Thermo-mechanical Coupling[J]Laser & Optoelectronics Progress, 2019, 56(5):176-185.
[31]潘浒,赵剑峰,刘云雷,等. 激光熔覆修复镍基高温合金稀释率的可控性研究[J].中国激光, 2013, 40(4):109-115.
PAN Hu , ZHAO Jianfeng, LIU Yunlei, et al. Controllability Research on Dilution Ratio of Nickel-based Superalloy by Laser Cladding Reparation[J]. Chinese Journal of Lasers, 2013, 40(4):109-115.
[32]KAMARA A M, WANG W, MARIMUTHU S, et al. Modelling of the Melt Pool Geometry in the Laser Deposition of Nickel Alloys Using the Anisotropic Enhanced Thermal Conductivity Approach[J].Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture. 2011, 225:87-99.
[33]CHEN Changpeng, YIN Jie, ZHU Haihong, et al. Effect of Overlap Rate and Pattern on Residual Stress in Selective Laser Melting[J]. International Journal of Machine Tools and Manufacture, 2019, 145:103433.
[34]HUSSEIN A, HAO Liang, YAN Chunze, et al. Finite Element Simulation of the Temperature and Stress Fields in Single Layers Built Without-support in Selective Laser Melting[J]. Materials and Design, 2013, 52:638-647.
[35]LI Yingli, ZHOU Kun, TAN Pengfei, et al. Modeling Temperature and Residual Stress Fields in Selective Laser Melting[J]. International Journal of Mechanical Sciences, 2018, 136:24-35.
[36]CHENG Bo, SHRESTHA S, CHOU K. Stress and Deformation Evaluations of Scanning Strategy Effect in Selective Laser Melting[J]. Additive Manufacturing, 2016, 12:240-251.
[37]MUGWAGWA L, DIMITROV D, MATOPE S, et al. Evaluation of the Impact of Scanning Strategies on Residual Stresses in Selective Laser Melting[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102:2441-2450.
|