[1]PSYK V, RISCH D, KINSEY B L,et al. Electromagnetic Forming—a Rview[J]. Journal of Materials Processing Technology, 2011, 211(5):787-829.
[2]SETH M, VOHNOUT V J, DAEHN G S.Formability of Steel Sheet in High Velocity Impact[J]. Journal of Materials Processing Technology, 2005, 168(3):390-400.
[3]ZHANG Rui, XU Zhutian, PENG Linfa, et al. Modelling of Ultra-thin Steel Sheet in Two-stage Tensile Deformation Considering Strain Path Change and Grain Size Effect and Application in Multi-stage Microforming[J]. International Journal of Machine Tools and Manufacture, 2021, 164:103713.
[4]LIN Yuhong, CUI Xiaohui, CHEN Kanghua, et al.Forming Limit and Mechanical Properties of 2024-O Aluminum Alloy under Electromagnetic Forming[J]. Metals and Materials International, 2022, 18(10):2472-2482.
[5]WANG Qiangkun, XU Junrui, ZHAO Yudong, et al. Fabrication of Automotive Titanium Bipolar Plates by Uniform Pressure Electromagnetic Incremental Forming Based on Arc Spiral Coil[J]. The International Journal of Advanced Manufacturing Technology, 2023, 129(9):4121-4147.
[6]金延野,于海平. 板材电磁成形技术研究进展[J]. 精密成形工程, 2021, 13(5):1-9.
JIN Yanye, YU Haiping. Research Development of Electromagnetic Forming(EMF) Technology in Sheet Metal[J].Journal of Netshape Forming Engineering, 2021,13(5):1-9.
[7]DAEHN GLENN S, KAMAL MANISH.A Uniform Pressure Electromagnetic Actuator for Forming Flat Sheets[J]. Journal of Manufacturing Science and Engineering, 2007, 129(2):369-379.
[8]LIU Ning, LAI Zhipeng, CAO Quanliang, et al. Effects of the Inner/Outer Diameters of Flat Spiral Coils on Electromagnetic Sheet Metal Formation[J]. The International Journal of Advanced Manufacturing Technology, 2020, 109:1541-1551.
[9]KINSEY B, ZHANG S, KORKOLIS Y P.Semi-Analytical Modelling with Numerical and Experimental Validation of Electromagnetic Forming Using a Uniform Pressure Actuator[J]. CIRP Annals, 2018, 67(1):285-288.
[10]GIES S, TEKKAYA A E.Analytical Prediction of Joule Heat Losses in Electromagnetic Forming Coils[J]. Journal of Materials Processing Technology, 2017, 246:102-115.
[11]MAMUTOV A V, GOLOVASHCHENKO S F, MAMUTOV V S.Experimental-analytical Method of Analyzing Performance of Coils for Electromagnetic Forming and Joining Operations[J]. Journal of Materials Processing Technology, 2018, 255:86-95
[12]XIONG Qi, HAN Xiaotao, CAO Quanliang, et al. Bulging of 1420 Al-Li Alloy Based on Pulse Current[J]. Procedia Engineering, 2014, 81:808-812.
[13]ZENG Xiaoyong, MENG Zhenghua, LIU Wei,et al. Electromagnetic Forming of Aluminum Alloy Strip by Imposing Inverse Current Instead of Inducing Eddy Current[J]. The International Journal of Advanced Manufacturing Technology, 2020, 111(11-12):3481-3488.
[14]DONG Pengxin, Li Zhangzhe, Cao Quanliag,et al. Pulsed Magnet Design and Fabrication for Generating Background Magnetic Field in Discharge Current-Based Forming[J]. IEEE Transactions on Applied Superconductivity, 2020, 30(4):1-5.
[15]GRAY Ⅲ G T, BLUMENTHAL W R.Split-Hopkinson Pressure Bar Testing of Soft Materials[J]. ASM Handbook, 2000, 8:488-496.
[16]KHAN A S, HUANG S.Experimental and Theoretical Study of Mechanical Behavior of 1100 Aluminum in the Strain Rate Range 10-5~104 s-1[J]. International Journal of Plasticity, 1992, 8(4):397-424.
[17]KLEINER M, BROSIUS A.Determination of Flow Curves at High Strain Rates Using the Electromagnetic Forming Process and an Iterative Finite Element Simulation Scheme[J]. CIRP Annals, 2006, 55(1):267-270.
[18]HENCHI I, LEPLATTENIER P, DAEHN G,et al. Material Constitutive Parameter Identification Using an Electromagnetic Ring Expansion Experiment Coupled with LS-DYNA and LS-OPT[C]∥Proceedings of the 10th International LS-DYNA Users Conference. 2008:203584634.
[19]JEANSON A C, AVRILLAUD G, MAZARS G,et al. Determination of High Strain-rate Behavior of Metals:Applications to Magnetic Pulse Forming and Electrohydraulic Forming[J]. Key Engineering Materials, 2014, 611:643-649.
[20]LI Hongwei, YAN Siliang, ZHAN Mei,et al. Eddy Current Induced Dynamic Deformation Behaviors of Aluminum Alloy during EMF:Modeling and Quantitative Characterization[J]. Journal of Materials Processing Technology, 2019, 263:423-439.
[21]CHU Y Y, LEE R S, PSYK V,et al. Determination of the Flow Curve at High Strain Rates Using Electromagnetic Punch Stretching[J]. Journal of Materials Processing Technology, 2012, 212(6):1314-1323.
[22]NOH H G, LEE K, KANG B S,et al. Inverse Parameter Estimation of the Cowper-Symonds Material Model for Electromagnetic Free Bulge Forming[J]. International Journal of Precision Engineering and Manufacturing, 2016, 17:1483-1492.
[23]UMBRELLO D, HUA J, SHIVPURI R. Hardness-based Flow Stress and Fracture Models for Numerical Simulation of Hard Machining AISI 52100 Bearing Steel[J]. Materials Science and Engineering:A, 2004, 374(1/2):90-100.
[24]ULUTAN D, ZEL T.Determination of Constitutive Material Model Parameters in FE-based Machining Simulations of Ti-6Al-4V and IN-100 Alloys:an Inverse Methodology[C]∥Proceedings of NAMRI/SME. Madison, 2013, 41:1-6.
[25]REN Junxue, CAI Ju, ZHOU Jinhua,et al. Inverse Determination of Improved Constitutive Equation for Cutting Titanium Alloy Ti-6Al-4V Based on Finite Element Analysis[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97:3671-3682.
[26]JUSTUSSON B, PANKOW M, HEINRICH C,et al. Use of a Shock Tube to Determine the Bi-axial Yield of an Aluminum Alloy under High Rates[J]. International Journal of Impact Engineering, 2013, 58:55-65.
[27]WOO M, KIM J.Inverse Parameter Estimation to Predict Material Parameters of the Cowper-symonds Constitutive Equation in Electrohydraulic Forming Process[J]. Journal of Engineering Mathematics, 2022, 132(1):8.
[28]LIU Wei, ZHOU Haibo, LI Jiaqi,et al. Comparison of Johnson-Cook and Cowper-Symonds Models for Aluminum Alloy Sheet by Inverse Identification Based on Electromagnetic Bulge[J]. International Journal of Material Forming, 2022, 15(2):10.
[29]CHENG Tao, MENG Zhenghua, LIU Wei,et al. Inverse Identification of Constitutive Model for Metallic Thin Sheet via Electromagnetic Hydraulic Bulge Experiment[J]. International Journal of Material Forming, 2023, 16(4):38.
[30]PSYK V, SCHEFFLER C, TULKE M, et al.Determination of Material and Failure Characteristics for High-speed Forming via High-speed Testing and Inverse Numerical Simulation[J]. Journal of Manufacturing and Materials Processing, 2020, 4(2):31.
[31]KANG D, NOH H G, KIM J, et al.Inverse Identification of a Constitutive Model for High-speed Forming Simulation:an Application to Electromagnetic Metal Forming[J]. Materials, 2022, 15(20):7179.
[32]JENAB A, GREEN D E, ALPAS A T, et al. Experimental and Numerical Analyses of Formability Improvement of AA5182-O Sheet during Electro-Hydraulic Forming[J]. Journal of Materials Processing Technology, 2018, 255:914-926.
[33]XIAO Ang, HUANG Changqing, LIU Hongsheng,et al. Deformation Mechanism of 5052 Aluminum Alloy Using Electrically Assisted Electromagnetic Forming[J]. Metals and Materials International, 2022, 28(10):2483-2497.
[34]HUANG Changqing, LIU Hongsheng, CUI Xiaohui,et al. Deformation Mechanism of 5052 Aluminum Alloy Using Electrically Assisted Electromagnetic Forming[J]. The International Journal of Advanced Manufacturing Technology, 2021,28:1-12.
|